Boosting Graph Structure Learning with Dummy Nodes
- URL: http://arxiv.org/abs/2206.08561v1
- Date: Fri, 17 Jun 2022 05:44:24 GMT
- Title: Boosting Graph Structure Learning with Dummy Nodes
- Authors: Xin Liu, Jiayang Cheng, Yangqiu Song, Xin Jiang
- Abstract summary: We extend graph kernels and graph neural networks with dummy nodes and conduct experiments on graph classification and subgraph isomorphism matching tasks.
We prove that such a dummy node can help build an efficient monomorphic edge-to-vertex transform and an epimorphic inverse to recover the original graph back.
- Score: 41.83708114701956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of graph kernels and graph representation learning, many
superior methods have been proposed to handle scalability and oversmoothing
issues on graph structure learning. However, most of those strategies are
designed based on practical experience rather than theoretical analysis. In
this paper, we use a particular dummy node connecting to all existing vertices
without affecting original vertex and edge properties. We further prove that
such the dummy node can help build an efficient monomorphic edge-to-vertex
transform and an epimorphic inverse to recover the original graph back. It also
indicates that adding dummy nodes can preserve local and global structures for
better graph representation learning. We extend graph kernels and graph neural
networks with dummy nodes and conduct experiments on graph classification and
subgraph isomorphism matching tasks. Empirical results demonstrate that taking
graphs with dummy nodes as input significantly boosts graph structure learning,
and using their edge-to-vertex graphs can also achieve similar results. We also
discuss the gain of expressive power from the dummy in neural networks.
Related papers
- Saliency-Aware Regularized Graph Neural Network [39.82009838086267]
We propose the Saliency-Aware Regularized Graph Neural Network (SAR-GNN) for graph classification.
We first estimate the global node saliency by measuring the semantic similarity between the compact graph representation and node features.
Then the learned saliency distribution is leveraged to regularize the neighborhood aggregation of the backbone.
arXiv Detail & Related papers (2024-01-01T13:44:16Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
Graph Neural Networks (GNNs) achieve significant performance for various learning tasks on geometric data.
In this paper, we propose a unified framework satisfied by most existing GNN explainers.
We introduce GraphSVX, a post hoc local model-agnostic explanation method specifically designed for GNNs.
arXiv Detail & Related papers (2021-04-18T10:40:37Z) - Generating a Doppelganger Graph: Resembling but Distinct [5.618335078130568]
We propose an approach to generating a doppelganger graph that resembles a given one in many graph properties.
The approach is an orchestration of graph representation learning, generative adversarial networks, and graph realization algorithms.
arXiv Detail & Related papers (2021-01-23T22:08:27Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Learning Deep Graph Representations via Convolutional Neural Networks [7.1945109570193795]
We propose a framework called DeepMap to learn deep representations for graph feature maps.
The learned deep representation for a graph is a dense and low-dimensional vector that captures complex high-order interactions.
We empirically validate DeepMap on various graph classification benchmarks and demonstrate that it achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-04-05T08:49:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.