論文の概要: Reviewer Preferences and Gender Disparities in Aesthetic Judgments
- arxiv url: http://arxiv.org/abs/2206.08697v2
- Date: Tue, 21 Jun 2022 06:56:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 17:49:25.905138
- Title: Reviewer Preferences and Gender Disparities in Aesthetic Judgments
- Title(参考訳): 審美判断におけるレビュアーの嗜好と性差
- Authors: Ida Marie Schytt Lassen, Yuri Bizzoni, Telma Peura, Mads Rosendahl
Thomsen, Kristoffer Laigaard Nielbo
- Abstract要約: 本稿では, 文献レビューを審美判断の代名詞として用いて, バイアスに起因した系統的要素を同定する。
新聞における文学的品質の判断は、男性作家の嗜好に男女差があることが判明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aesthetic preferences are considered highly subjective resulting in
inherently noisy judgements of aesthetic objects, yet certain aspects of
aesthetic judgement display convergent trends over time. This paper present a
study that uses literary reviews as a proxy for aesthetic judgement in order to
identify systematic components that can be attributed to bias. Specifically we
find that judgement of literary quality in newspapers displays a gender bias in
preference of male writers. Male reviewers have a same gender preference while
female reviewer show an opposite gender preference. While alternative accounts
exist of this apparent gender disparity, we argue that it reflects a cultural
gender antagonism.
- Abstract(参考訳): 審美的嗜好は、審美的対象の本質的にうるさく判断されるが、審美的判断の特定の側面は時間の経過とともに収束する傾向を示す。
本稿では, 文献レビューを審美判断の代名詞として用いて, バイアスに起因した系統的要素を同定する研究について述べる。
具体的には、新聞における文学的質の判断は、男性作家を優先するジェンダーバイアスを示す。
男性レビュアーは同じ性選好を持ち、女性レビュアーは反対の性選好を示す。
この明らかな性別格差には別の説があるが、文化的なジェンダーの対立を反映していると主張する。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - Reflecting the Male Gaze: Quantifying Female Objectification in 19th and 20th Century Novels [3.0623865942628594]
本稿では,性別の偏見を女性客観化の観点から分析する枠組みを提案する。
我々の枠組みは2つの軸に沿って女性の客観性を測定する。
私たちの枠組みを19世紀と20世紀の小説に適用すると、女性の客観化の証拠が明らかになる。
論文 参考訳(メタデータ) (2024-03-25T20:16:14Z) - Don't Overlook the Grammatical Gender: Bias Evaluation for Hindi-English
Machine Translation [0.0]
既存の評価ベンチマークは主に翻訳のソース言語としての英語に焦点を当てている。
英語以外のソース言語では、研究はしばしばバイアス評価のために性中立の文を用いる。
本研究は,ソースコード中の文法的ジェンダーマーカーを考慮に入れたバイアス評価テストセットの調整の重要性を強調した。
論文 参考訳(メタデータ) (2023-11-11T09:28:43Z) - ''Fifty Shades of Bias'': Normative Ratings of Gender Bias in GPT
Generated English Text [11.085070600065801]
言語は、社会的信念システムの顕在化のための強力なツールとして機能する。
ジェンダーバイアスは、私たちの社会でもっとも普及しているバイアスの1つです。
我々は、GPT生成した英語テキストの最初のデータセットを作成し、男女バイアスの規範的評価を行う。
論文 参考訳(メタデータ) (2023-10-26T14:34:06Z) - Will the Prince Get True Love's Kiss? On the Model Sensitivity to Gender
Perturbation over Fairytale Texts [87.62403265382734]
近年の研究では、伝統的な妖精は有害な性バイアスを伴っていることが示されている。
本研究は,ジェンダーの摂動に対する頑健さを評価することによって,言語モデルの学習バイアスを評価することを目的とする。
論文 参考訳(メタデータ) (2023-10-16T22:25:09Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - Gender Biases in Automatic Evaluation Metrics for Image Captioning [87.15170977240643]
画像キャプションタスクのためのモデルに基づく評価指標において、性別バイアスの体系的研究を行う。
偏りのある世代と偏りのない世代を区別できないことを含む、これらの偏りのあるメトリクスを使用することによる負の結果を実証する。
人間の判断と相関を損なうことなく、測定バイアスを緩和する簡便で効果的な方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T04:27:40Z) - A Moral- and Event- Centric Inspection of Gender Bias in Fairy Tales at
A Large Scale [50.92540580640479]
7つの文化から得られた624個の妖精物語を含む妖精物語データセットにおいて,ジェンダーバイアスを計算的に解析した。
その結果,男性キャラクターの数は女性キャラクターの2倍であり,男女表現が不均等であることが判明した。
女性キャラクターは、注意、忠誠、尊厳に関する道徳的な言葉とより関連しているのに対し、男性キャラクターは、公正、権威に関する道徳的な単語とより関連している。
論文 参考訳(メタデータ) (2022-11-25T19:38:09Z) - Uncovering Implicit Gender Bias in Narratives through Commonsense
Inference [21.18458377708873]
モデル生成物語における主人公に関連する性別バイアスについて検討する。
暗黙のバイアスに注目し、コモンセンス推論エンジンを使ってそれらを明らかにする。
論文 参考訳(メタデータ) (2021-09-14T04:57:45Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z) - Unsupervised Discovery of Implicit Gender Bias [38.59057512390926]
我々は、女性に対する性的偏見をコメントレベルで識別するために、教師なしのアプローチをとる。
主な課題は、データ内の他のアーティファクトではなく、暗黙のバイアスの兆候にモデルを集中させることです。
論文 参考訳(メタデータ) (2020-04-17T17:36:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。