DenseMTL: Cross-task Attention Mechanism for Dense Multi-task Learning
- URL: http://arxiv.org/abs/2206.08927v2
- Date: Tue, 08 Oct 2024 09:55:21 GMT
- Title: DenseMTL: Cross-task Attention Mechanism for Dense Multi-task Learning
- Authors: Ivan Lopes, Tuan-Hung Vu, Raoul de Charette,
- Abstract summary: We propose a novel multi-task learning architecture that leverages pairwise cross-task exchange through correlation-guided attention and self-attention.
We conduct extensive experiments across three multi-task setups, showing the advantages of our approach compared to competitive baselines in both synthetic and real-world benchmarks.
- Score: 18.745373058797714
- License:
- Abstract: Multi-task learning has recently emerged as a promising solution for a comprehensive understanding of complex scenes. In addition to being memory-efficient, multi-task models, when appropriately designed, can facilitate the exchange of complementary signals across tasks. In this work, we jointly address 2D semantic segmentation and three geometry-related tasks: dense depth estimation, surface normal estimation, and edge estimation, demonstrating their benefits on both indoor and outdoor datasets. We propose a novel multi-task learning architecture that leverages pairwise cross-task exchange through correlation-guided attention and self-attention to enhance the overall representation learning for all tasks. We conduct extensive experiments across three multi-task setups, showing the advantages of our approach compared to competitive baselines in both synthetic and real-world benchmarks. Additionally, we extend our method to the novel multi-task unsupervised domain adaptation setting. Our code is available at https://github.com/cv-rits/DenseMTL
Related papers
- RepVF: A Unified Vector Fields Representation for Multi-task 3D Perception [64.80760846124858]
This paper proposes a novel unified representation, RepVF, which harmonizes the representation of various perception tasks.
RepVF characterizes the structure of different targets in the scene through a vector field, enabling a single-head, multi-task learning model.
Building upon RepVF, we introduce RFTR, a network designed to exploit the inherent connections between different tasks.
arXiv Detail & Related papers (2024-07-15T16:25:07Z) - Cross-Task Affinity Learning for Multitask Dense Scene Predictions [5.939164722752263]
Multitask learning (MTL) has become prominent for its ability to predict multiple tasks jointly.
We introduce the Cross-Task Affinity Learning (CTAL) module, a lightweight framework that enhances task refinement in multitask networks.
Our results demonstrate state-of-the-art MTL performance for both CNN and transformer backbones, using significantly fewer parameters than single-task learning.
arXiv Detail & Related papers (2024-01-20T05:31:47Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Multi-task Learning with 3D-Aware Regularization [55.97507478913053]
We propose a structured 3D-aware regularizer which interfaces multiple tasks through the projection of features extracted from an image encoder to a shared 3D feature space.
We show that the proposed method is architecture agnostic and can be plugged into various prior multi-task backbones to improve their performance.
arXiv Detail & Related papers (2023-10-02T08:49:56Z) - InvPT++: Inverted Pyramid Multi-Task Transformer for Visual Scene
Understanding [11.608682595506354]
Multi-task scene understanding aims to design models that can simultaneously predict several scene understanding tasks with one versatile model.
Previous studies typically process multi-task features in a more local way, and thus cannot effectively learn spatially global and cross-task interactions.
We propose an Inverted Pyramid multi-task Transformer, capable of modeling cross-task interaction among spatial features of different tasks in a global context.
arXiv Detail & Related papers (2023-06-08T00:28:22Z) - Learning to Relate Depth and Semantics for Unsupervised Domain
Adaptation [87.1188556802942]
We present an approach for encoding visual task relationships to improve model performance in an Unsupervised Domain Adaptation (UDA) setting.
We propose a novel Cross-Task Relation Layer (CTRL), which encodes task dependencies between the semantic and depth predictions.
Furthermore, we propose an Iterative Self-Learning (ISL) training scheme, which exploits semantic pseudo-labels to provide extra supervision on the target domain.
arXiv Detail & Related papers (2021-05-17T13:42:09Z) - Exploring Relational Context for Multi-Task Dense Prediction [76.86090370115]
We consider a multi-task environment for dense prediction tasks, represented by a common backbone and independent task-specific heads.
We explore various attention-based contexts, such as global and local, in the multi-task setting.
We propose an Adaptive Task-Relational Context module, which samples the pool of all available contexts for each task pair.
arXiv Detail & Related papers (2021-04-28T16:45:56Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
Multi-task learning (MTL) is a subfield of machine learning in which multiple tasks are simultaneously learned by a shared model.
We give an overview of multi-task learning methods for deep neural networks, with the aim of summarizing both the well-established and most recent directions within the field.
arXiv Detail & Related papers (2020-09-10T19:31:04Z) - Understanding and Improving Information Transfer in Multi-Task Learning [14.43111978531182]
We study an architecture with a shared module for all tasks and a separate output module for each task.
We show that misalignment between task data can cause negative transfer (or hurt performance) and provide sufficient conditions for positive transfer.
Inspired by the theoretical insights, we show that aligning tasks' embedding layers leads to performance gains for multi-task training and transfer learning.
arXiv Detail & Related papers (2020-05-02T23:43:52Z) - MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning [82.62433731378455]
We show that tasks with high affinity at a certain scale are not guaranteed to retain this behaviour at other scales.
We propose a novel architecture, namely MTI-Net, that builds upon this finding.
arXiv Detail & Related papers (2020-01-19T21:02:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.