論文の概要: The Impact of Variable Ordering on Bayesian Network Structure Learning
- arxiv url: http://arxiv.org/abs/2206.08952v2
- Date: Fri, 12 Apr 2024 16:05:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 20:25:39.010260
- Title: The Impact of Variable Ordering on Bayesian Network Structure Learning
- Title(参考訳): ベイジアンネットワーク構造学習における可変順序の影響
- Authors: Neville K Kitson, Anthony C Constantinou,
- Abstract要約: 本研究では,データから変数を読み取る順序が,これらの因子よりもアルゴリズムの精度に大きく影響を与えることを示す。
変数順序付けは任意であるため、学習したグラフの精度に重要な影響を与える。
- 参考スコア(独自算出の注目度): 6.691151987390148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal Bayesian Networks provide an important tool for reasoning under uncertainty with potential application to many complex causal systems. Structure learning algorithms that can tell us something about the causal structure of these systems are becoming increasingly important. In the literature, the validity of these algorithms is often tested for sensitivity over varying sample sizes, hyper-parameters, and occasionally objective functions. In this paper, we show that the order in which the variables are read from data can have much greater impact on the accuracy of the algorithm than these factors. Because the variable ordering is arbitrary, any significant effect it has on learnt graph accuracy is concerning, and this raises questions about the validity of the results produced by algorithms that are sensitive to, but have not been assessed against, different variable orderings.
- Abstract(参考訳): Causal Bayesian Networksは、多くの複雑な因果系への潜在的な適用の不確実性の下で推論するための重要なツールを提供する。
これらのシステムの因果構造について何かを教えてくれる構造学習アルゴリズムは、ますます重要になりつつある。
文献では、これらのアルゴリズムの妥当性は、様々なサンプルサイズ、ハイパーパラメータ、時には客観的関数に対する感度のためにしばしばテストされる。
本稿では,データから変数を読み取る順序が,これらの因子よりもアルゴリズムの精度に大きな影響を与えることを示す。
変数順序付けは任意であるため、学習したグラフの精度に影響を及ぼす重要な効果が関係しており、これは異なる変数順序付けに対して敏感だが評価されていないアルゴリズムによって生成される結果の有効性に関する疑問を提起する。
関連論文リスト
- Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
本稿では,観測結果から対象変数の因果変数を推定する機械学習手法を提案する。
我々は、シミュレートされたデータの教師あり学習を通じて因果関係を特定するために訓練されたニューラルネットワークを用いる。
大規模遺伝子制御ネットワークにおける因果関係の同定における本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-29T02:21:11Z) - Robustness of Algorithms for Causal Structure Learning to Hyperparameter
Choice [2.3020018305241337]
ハイパーパラメータチューニングは、どんなアルゴリズムでも最先端と予測性能の低さを区別することができる。
本稿では,ハイパーパラメータ選択が因果構造学習タスクに及ぼす影響について検討する。
論文 参考訳(メタデータ) (2023-10-27T15:34:08Z) - Causal Entropy and Information Gain for Measuring Causal Control [0.22252684361733285]
本稿では,因果的エントロピーと相互情報の因果的バージョンを,因果的エントロピーと因果的情報ゲインと呼ぶ形で導入する。
これらの量は他の変数への介入によって生じる変数のエントロピーの変化を捉えている。
これらの量と因果効果の存在を結びつける基礎的な結果が導出された。
論文 参考訳(メタデータ) (2023-09-14T13:25:42Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Trying to Outrun Causality with Machine Learning: Limitations of Model
Explainability Techniques for Identifying Predictive Variables [7.106986689736828]
機械学習のアルゴリズムは、見た目ほど柔軟性がなく、データの根底にある因果構造に驚くほど敏感であることを示す。
我々は、重要な変数のデータを探索したい研究者のために、いくつかの代替のレコメンデーションを提供する。
論文 参考訳(メタデータ) (2022-02-20T17:48:54Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - Everything Has a Cause: Leveraging Causal Inference in Legal Text
Analysis [62.44432226563088]
因果推論は変数間の因果関係を捉えるプロセスである。
本論文では,事実記述から因果グラフを構築するための新たなグラフベース因果推論フレームワークを提案する。
GCIに含まれる因果知識を強力なニューラルネットワークに効果的に注入することで、パフォーマンスと解釈性が向上します。
論文 参考訳(メタデータ) (2021-04-19T16:13:10Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
影響関数は、テスト時間予測におけるサンプルの効果を近似する。
影響評価は浅いネットワークでは かなり正確です
ヘッセン正則化は、高品質な影響推定を得るために重要である。
論文 参考訳(メタデータ) (2020-06-25T18:25:59Z) - Differentiable Causal Backdoor Discovery [36.68511018339594]
本稿では,勾配に基づく最適化手法により適切な調整を行うために,楽器と同様の補助変数を利用するアルゴリズムを提案する。
完全な因果グラフの知識を必要とせず、真の因果効果を推定する実用的な選択肢よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-03-03T11:32:43Z) - Causal query in observational data with hidden variables [0.0]
本研究では、局所探索を用いて、観測データから因果効果を推定するための調整変数のスーパーセットを求める定理を開発する。
開発した定理に基づいて,因果クエリのためのデータ駆動型アルゴリズムを提案する。
実験により,提案アルゴリズムは隠れ変数を持つ既存のデータ駆動因果効果推定法よりも高速で,因果効果を推定できることがわかった。
論文 参考訳(メタデータ) (2020-01-28T11:23:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。