論文の概要: Trying to Outrun Causality with Machine Learning: Limitations of Model
Explainability Techniques for Identifying Predictive Variables
- arxiv url: http://arxiv.org/abs/2202.09875v3
- Date: Wed, 23 Feb 2022 15:57:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-24 14:26:04.379475
- Title: Trying to Outrun Causality with Machine Learning: Limitations of Model
Explainability Techniques for Identifying Predictive Variables
- Title(参考訳): 機械学習による因果関係打破の試み--予測変数同定のためのモデル説明可能性手法の限界
- Authors: Matthew J. Vowels
- Abstract要約: 機械学習のアルゴリズムは、見た目ほど柔軟性がなく、データの根底にある因果構造に驚くほど敏感であることを示す。
我々は、重要な変数のデータを探索したい研究者のために、いくつかの代替のレコメンデーションを提供する。
- 参考スコア(独自算出の注目度): 7.106986689736828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning explainability techniques have been proposed as a means of
`explaining' or interrogating a model in order to understand why a particular
decision or prediction has been made. Such an ability is especially important
at a time when machine learning is being used to automate decision processes
which concern sensitive factors and legal outcomes. Indeed, it is even a
requirement according to EU law. Furthermore, researchers concerned with
imposing overly restrictive functional form (e.g. as would be the case in a
linear regression) may be motivated to use machine learning algorithms in
conjunction with explainability techniques, as part of exploratory research,
with the goal of identifying important variables which are associated with an
outcome of interest. For example, epidemiologists might be interested in
identifying 'risk factors' - i.e., factors which affect recovery from disease -
by using random forests and assessing variable relevance using importance
measures. However, and as we aim to demonstrate, machine learning algorithms
are not as flexible as they might seem, and are instead incredibly sensitive to
the underling causal structure in the data. The consequences of this are that
predictors which are, in fact, critical to a causal system and highly
correlated with the outcome, may nonetheless be deemed by explainability
techniques to be unrelated/unimportant/unpredictive of the outcome. Rather than
this being a limitation of explainability techniques per se, it is rather a
consequence of the mathematical implications of regressions, and the
interaction of these implications with the associated conditional
independencies of the underlying causal structure. We provide some alternative
recommendations for researchers wanting to explore the data for important
variables.
- Abstract(参考訳): 機械学習の説明可能性技術は、なぜ特定の決定や予測がなされたのかを理解するために「説明」やモデルを問う方法として提案されている。
このような能力は、センシティブな要因や法的結果に関する意思決定プロセスの自動化にマシンラーニングが使用されている場合に特に重要です。
実際、これはEUの法律による要件ですらある。
さらに、過度に制限された機能形式(例えば線形回帰の場合)を課すことに関心を持つ研究者は、興味のある結果に関連する重要な変数を特定することを目的として、探索研究の一環として説明可能性技術とともに機械学習アルゴリズムを使用する動機があるかもしれない。
例えば、疫学者は「リスク要因」、すなわち、ランダムな森林を用いて病気からの回復に影響を与える要因を特定し、重要度を用いて変数の関連性を評価することに興味があるかもしれない。
しかし、私たちが実証しようとしているように、機械学習のアルゴリズムは見た目ほど柔軟性がなく、データの根底にある因果構造に驚くほど敏感です。
この結果、実際に因果系に批判的であり、結果と非常に相関している予測子は、しかしながら、結果に無関係で非重要かつ非予測的な説明可能性技術によって見なされる可能性がある。
これは、それ自体が説明可能性のテクニックの制限であるよりもむしろ、回帰の数学的含意と、これらの含意と、根底にある因果構造の関連する条件的非依存性との相互作用の結果である。
重要な変数のデータを探索したい研究者に、代替案をいくつか提供します。
関連論文リスト
- Detection and Evaluation of bias-inducing Features in Machine learning [14.045499740240823]
機械学習(ML)の文脈では、システムの偏りのある振る舞いの理由を理解するために、原因から影響までの分析を用いることができる。
ドメインエキスパートの意思決定を支援するために,モデルの全バイアス誘発特徴を体系的に同定する手法を提案する。
論文 参考訳(メタデータ) (2023-10-19T15:01:16Z) - Causal Entropy and Information Gain for Measuring Causal Control [0.22252684361733285]
本稿では,因果的エントロピーと相互情報の因果的バージョンを,因果的エントロピーと因果的情報ゲインと呼ぶ形で導入する。
これらの量は他の変数への介入によって生じる変数のエントロピーの変化を捉えている。
これらの量と因果効果の存在を結びつける基礎的な結果が導出された。
論文 参考訳(メタデータ) (2023-09-14T13:25:42Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discoveryは、観測データから因果構造を学習するための自動探索手法を見つけることを目的としている。
この論文は因果発見における2つの疑問に焦点をあてる: (i) k-三角形の忠実性の代替定義を提供すること (i) (i) はガウス分布の族に適用されるとき強い忠実性よりも弱いこと (ii) 修正版の強忠実性が成り立つという仮定のもとに。
論文 参考訳(メタデータ) (2023-08-15T01:23:42Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - On Learning Necessary and Sufficient Causal Graphs [29.339455706346193]
実際には、グラフ内の変数の小さな部分集合のみが関心の結果に関係している。
本稿では,目的達成のための因果関係変数のみを含む,必要かつ十分な因果グラフ(NSCG)のクラスを学習することを提案する。
因果関係の確率と特徴の自然因果関係の理論的性質を確立することにより,必要な因果構造学習(NSCSL)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-01-29T08:19:15Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Bayesian Model Averaging for Data Driven Decision Making when Causality
is Partially Known [0.0]
我々はベイズモデル平均化(BMA)のようなアンサンブル法を用いて因果グラフの集合を推定する。
潜在的な介入の期待値とリスクを明示的に計算して意思決定を行います。
論文 参考訳(メタデータ) (2021-05-12T01:55:45Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。