論文の概要: KitBit: A New AI Model for Solving Intelligence Tests and Numerical
Series
- arxiv url: http://arxiv.org/abs/2206.08965v3
- Date: Wed, 20 Dec 2023 19:47:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-22 19:44:22.637139
- Title: KitBit: A New AI Model for Solving Intelligence Tests and Numerical
Series
- Title(参考訳): KitBit: インテリジェンステストと数値シリーズの解決のための新しいAIモデル
- Authors: V\'ictor Corsino, Jos\'e Manuel Gilp\'erez, Luis Herrera
- Abstract要約: 削減されたアルゴリズムとそれらの組み合わせを使って予測モデルを構築するKitBitと呼ばれる新しい計算モデルを提案する。
我々は、アルゴリズムのリストの形式でパターンを見つけ、今までで最大のシリーズ数で次の用語を予測する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The resolution of intelligence tests, in particular numerical sequences, has
been of great interest in the evaluation of AI systems. We present a new
computational model called KitBit that uses a reduced set of algorithms and
their combinations to build a predictive model that finds the underlying
pattern in numerical sequences, such as those included in IQ tests and others
of much greater complexity. We present the fundamentals of the model and its
application in different cases. First, the system is tested on a set of number
series used in IQ tests collected from various sources. Next, our model is
successfully applied on the sequences used to evaluate the models reported in
the literature. In both cases, the system is capable of solving these types of
problems in less than a second using standard computing power. Finally,
KitBit's algorithms have been applied for the first time to the complete set of
entire sequences of the well-known OEIS database. We find a pattern in the form
of a list of algorithms and predict the following terms in the largest number
of series to date. These results demonstrate the potential of KitBit to solve
complex problems that could be represented numerically.
- Abstract(参考訳): インテリジェンステストの解決、特に数値シーケンスは、AIシステムの評価に大きな関心を寄せている。
そこで我々は,減算アルゴリズムとそれらの組み合わせを用いて,IQテストなどの数値列の下位パターンを検出する予測モデルを構築するKitBitという新しい計算モデルを提案する。
我々は,モデルの基礎と応用について異なるケースで述べる。
まず、システムは様々なソースから収集されたiqテストで使用される一連の数列でテストされる。
次に,本論文で報告したモデルの評価に用いる配列に対して,本モデルを適用した。
どちらの場合でも、このシステムは標準的な計算能力を使って1秒足らずでこれらの問題を解決することができる。
最後に、KitBitのアルゴリズムは、よく知られたOEISデータベースの全シーケンスの完全なセットに初めて適用された。
我々は、アルゴリズムのリストの形式でパターンを見つけ、今までで最大のシリーズ数で次の用語を予測する。
これらの結果は,kitbit が数値的に表現できる複雑な問題を解く可能性を示している。
関連論文リスト
- Gradients of Functions of Large Matrices [18.361820028457718]
数値線形代数のワークホースを効率的に区別する方法を示す。
以前は知られていなかったLanczosとArnoldiのイテレーションのアジョイントシステムをJAXで実装し、結果として得られるコードがDiffraxと競合することを示す。
これらはすべて、問題固有のコードの最適化なしに実現されます。
論文 参考訳(メタデータ) (2024-05-27T15:39:45Z) - Detection of Anomalies in Multivariate Time Series Using Ensemble
Techniques [3.2422067155309806]
最終的な決定に向けて,複数の基本モデルを組み合わせたアンサンブル手法を提案する。
また,ロジスティック回帰器を用いて基本モデルの出力を結合する半教師付き手法を提案する。
異常検出精度の点での性能改善は、教師なしモデルでは2%、半教師なしモデルでは少なくとも10%に達する。
論文 参考訳(メタデータ) (2023-08-06T17:51:22Z) - Mutual Exclusivity Training and Primitive Augmentation to Induce
Compositionality [84.94877848357896]
最近のデータセットは、標準的なシーケンス・ツー・シーケンスモデルにおける体系的な一般化能力の欠如を露呈している。
本稿では,セq2seqモデルの振る舞いを分析し,相互排他バイアスの欠如と全例を記憶する傾向の2つの要因を同定する。
広範に使用されている2つの構成性データセット上で、標準的なシーケンス・ツー・シーケンスモデルを用いて、経験的改善を示す。
論文 参考訳(メタデータ) (2022-11-28T17:36:41Z) - A Non-monotonic Self-terminating Language Model [62.93465126911921]
本稿では,不完全復号アルゴリズムによる非終端列の問題に焦点をあてる。
まず、グリーディ探索、トップ$kのサンプリング、核サンプリングを含む不完全確率復号アルゴリズムを定義する。
次に,単調な終端確率の制約を緩和する非単調な自己終端言語モデルを提案する。
論文 参考訳(メタデータ) (2022-10-03T00:28:44Z) - Conditional set generation using Seq2seq models [52.516563721766445]
条件セット生成は、トークンの入力シーケンスからセットへのマッピングを学習する。
シーケンス・ツー・シーケンス(Seq2seq)モデルは、モデルセット生成において一般的な選択である。
本稿では,ラベル順序空間上の情報的順序を効果的に抽出する新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-25T04:17:50Z) - QUBO formulations for numerical quantum computing [0.0]
Harrow-Hassidim-Lloydアルゴリズムは、ゲートモデル量子コンピュータ上の線形システムを解くための重要な量子アルゴリズムである。
Ax=b を満たすベクトル x に対する非制約バイナリ最適化 (QUBO) モデルを見つける。
我々は,これらのQUBOモデルをD-Waveシステム上で検証し,その結果について考察する。
論文 参考訳(メタデータ) (2021-06-21T02:49:59Z) - Abstractive Summarization with Combination of Pre-trained
Sequence-to-Sequence and Saliency Models [11.420640383826656]
本稿では,テキストの重要部分と事前学習したSeq-to-seqモデルとの相性モデルの有効性について検討する。
組み合わせモデルは、CNN/DMとXSumの両方のデータセット上で、単純な微調整のSeq-to-seqモデルよりも優れていた。
論文 参考訳(メタデータ) (2020-03-29T14:00:25Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
乗算重み更新法に基づいて,Klivans と Meka のアルゴリズムを適用した。
アルゴリズムは、文献の他のものと質的に類似したサンプル複雑性境界を楽しみます。
ランタイムが低い$O(mp2)$で、$m$サンプルと$p$ノードの場合には、簡単にオンライン形式で実装できる。
論文 参考訳(メタデータ) (2020-02-20T10:50:58Z) - Genetic Algorithms for Redundancy in Interaction Testing [0.6396288020763143]
インタラクションテストには一連のテストの設計が含まれており、少数のコンポーネントが連携して動作する場合、障害を検出することが保証される。
これらのテストスイートを構築するための既存のアルゴリズムは通常、ほとんどのテストを生成する1つの"高速"アルゴリズムと、テストスイートを"完全"する別の"より遅い"アルゴリズムを含んでいる。
我々は、これらのアプローチを一般化する遺伝的アルゴリズムを用いて、選択したアルゴリズムの数を増やして冗長性も含み、それを「ステージ」と呼ぶ。
論文 参考訳(メタデータ) (2020-02-13T10:16:46Z) - Learn to Predict Sets Using Feed-Forward Neural Networks [63.91494644881925]
本稿では、ディープフィードフォワードニューラルネットワークを用いた設定予測の課題に対処する。
未知の置換と基数を持つ集合を予測するための新しい手法を提案する。
関連視覚問題に対する集合定式化の有効性を実証する。
論文 参考訳(メタデータ) (2020-01-30T01:52:07Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
本稿では,モデル選択の課題を解決するために,新しいベイズ最適化(BO)アルゴリズムを提案する。
結果として得られる複数のブラックボックス関数の最適化問題を協調的かつ効率的に解くために,ブラックボックス関数間の潜在的な相関を利用する。
我々は、シーケンス予測のための段階的モデル選択(SMS)の問題を初めて定式化し、この目的のために効率的な共同学習アルゴリズムを設計し、実証する。
論文 参考訳(メタデータ) (2020-01-12T09:42:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。