論文の概要: QUBO formulations for numerical quantum computing
- arxiv url: http://arxiv.org/abs/2106.10819v4
- Date: Sun, 23 Jan 2022 18:26:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-25 23:27:55.683063
- Title: QUBO formulations for numerical quantum computing
- Title(参考訳): 数値量子コンピューティングのためのQUBO定式化
- Authors: Kyungtaek Jun
- Abstract要約: Harrow-Hassidim-Lloydアルゴリズムは、ゲートモデル量子コンピュータ上の線形システムを解くための重要な量子アルゴリズムである。
Ax=b を満たすベクトル x に対する非制約バイナリ最適化 (QUBO) モデルを見つける。
我々は,これらのQUBOモデルをD-Waveシステム上で検証し,その結果について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of quantum computers, many quantum computing algorithms are
being developed. Solving linear systems is one of the most fundamental problems
in almost all science and engineering. The Harrow-Hassidim-Lloyd algorithm, a
monumental quantum algorithm for solving linear systems on gate model quantum
computers, was invented and several advanced variations have been developed.
For a given n by n matrix A and a vector b, we will find unconstrained binary
optimization (QUBO) models for a vector x that satisfies Ax=b. To formulate
QUBO models for a linear system solving problem, we make use of a linear
least-square problem with binary representation of the solution. We validate
those QUBO models on the D-Wave system and discuss the results. For a simple
system, we provide a Python code to calculate the matrix characterizing the
relationship between the variables and to print the test code that can be used
directly in the D-Wave system.
- Abstract(参考訳): 量子コンピュータの出現により、多くの量子コンピューティングアルゴリズムが開発されている。
線形システムを解くことは、ほとんどすべての科学と工学において最も根本的な問題の1つである。
ゲートモデル量子コンピュータ上で線形系を解くための記念碑的量子アルゴリズムであるharrow-hassidim-lloydアルゴリズムが発明され、いくつかの高度なバリエーションが開発されている。
与えられた n by n 行列 A とベクトル b に対して、Ax=b を満たすベクトル x に対する非制約バイナリ最適化(QUBO)モデルを求める。
線形系の解法問題に対してquboモデルを定式化するために, 解のバイナリ表現を伴う線形最小二乗問題を用いる。
我々は,これらのQUBOモデルをD-Waveシステム上で検証し,結果について議論する。
簡単なシステムでは、変数間の関係を特徴付けるマトリックスを計算し、d-waveシステムで直接使用できるテストコードをプリントするためのpythonコードを提供する。
関連論文リスト
- Shadow Quantum Linear Solver: A Resource Efficient Quantum Algorithm for Linear Systems of Equations [0.8437187555622164]
本稿では,デジタル量子デバイス上での量子線形システム問題(QLSP)の解法を提案する。
その結果、大きな制御されたユニタリの必要性を回避し、システムサイズで対数的な多くの量子ビットを必要とする量子アルゴリズムが実現した。
これを、線形代数の分解定理を利用して、2次元格子における離散化されたラプラス方程式を解くことで、実用的妥当性の物理問題に適用する。
論文 参考訳(メタデータ) (2024-09-13T15:46:32Z) - Hybrid quantum-classical and quantum-inspired classical algorithms for
solving banded circulant linear systems [0.8192907805418583]
帯状循環系に対する量子状態の組み合わせの凸最適化に基づく効率的なアルゴリズムを提案する。
帯状循環行列を巡回置換に分解することにより, 量子状態の組み合わせによる近似解を$K$とする。
我々は,従来のシミュレーションと実際のIBM量子コンピュータ実装を用いて本手法を検証し,熱伝達などの物理問題への適用性を示した。
論文 参考訳(メタデータ) (2023-09-20T16:27:16Z) - Carleman linearization based efficient quantum algorithm for higher
order polynomial differential equations [2.707154152696381]
量子プラットフォーム上で任意の次数ベクトル場を持つ非線形微分方程式をシミュレートする効率的な量子アルゴリズムを提案する。
通常の微分方程式(ODE)や偏微分方程式(PDE)によって支配される物理系のモデルは、古典的なコンピュータでは解決が難しい。
論文 参考訳(メタデータ) (2022-12-21T05:21:52Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
Harrow-Hassidim-Lloyd (HHL) の量子力学的実装から有用な情報が抽出可能であることを示す。
しかし,本論文では,HHLの量子力学的実装から有用な情報を抽出し,古典的側面における解を見つける際の複雑性を低減することを目的としている。
論文 参考訳(メタデータ) (2022-10-23T11:58:05Z) - A near-term quantum algorithm for solving linear systems of equations based on the Woodbury identity [0.602276990341246]
本稿では,不規則高原や局所最適解などの問題を回避し,方程式の線形系を解くための量子アルゴリズムについて述べる。
このアルゴリズムは、他の(容易に可逆な)行列の低ランクな修正である行列の逆を解析的に記述するウッドベリー恒等式に基づいている。
我々は、IBMのオークランド量子コンピュータを用いて、2%の誤差で1600万以上の方程式を解いたシステムの内部積を推定する。
論文 参考訳(メタデータ) (2022-05-02T04:32:01Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
本稿では,「Sender-Receiver」モデルを用いた行列演算のための量子アルゴリズムを提案する。
これらの量子プロトコルは、他の量子スキームのサブルーチンとして使用できる。
論文 参考訳(メタデータ) (2022-02-10T08:12:20Z) - Quantum Algorithm for Solving a Quadratic Nonlinear System of Equations [0.22940141855172036]
アルゴリズムの複雑さは$O(rm polylog(n/epsilon))$であり、これは次元$n$の最適古典アルゴリズムよりも指数関数的に改善される。
我々のアルゴリズムは指数関数的にQNSEの解を加速し、あらゆる非線形問題に適用できる。
論文 参考訳(メタデータ) (2021-12-03T00:27:16Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
3次元形状と画像のマッチング問題は、NPハードな置換行列制約を持つ二次代入問題(QAP)としてしばしば定式化される。
本稿では,量子ハードウェア上での効率的な実行に適した制約のない問題として,いくつかのQAPの再構成を提案する。
提案アルゴリズムは、将来の量子コンピューティングアーキテクチャにおいて、より高次元にスケールする可能性がある。
論文 参考訳(メタデータ) (2021-07-08T17:59:55Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Joint Deep Reinforcement Learning and Unfolding: Beam Selection and
Precoding for mmWave Multiuser MIMO with Lens Arrays [54.43962058166702]
離散レンズアレイを用いたミリ波マルチユーザマルチインプット多重出力(MU-MIMO)システムに注目が集まっている。
本研究では、DLA を用いた mmWave MU-MIMO システムのビームプリコーディング行列の共同設計について検討する。
論文 参考訳(メタデータ) (2021-01-05T03:55:04Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
我々は、リコメンダシステムと最小二乗回帰のためのクエリをサポートする古典的な(量子でない)動的データ構造を作成する。
これらの問題に対する以前の量子インスパイアされたアルゴリズムは、レバレッジやリッジレベレッジスコアを偽装してサンプリングしていると我々は主張する。
論文 参考訳(メタデータ) (2020-11-09T01:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。