論文の概要: Beyond Real-world Benchmark Datasets: An Empirical Study of Node
Classification with GNNs
- arxiv url: http://arxiv.org/abs/2206.09144v1
- Date: Sat, 18 Jun 2022 08:03:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-26 07:31:32.545202
- Title: Beyond Real-world Benchmark Datasets: An Empirical Study of Node
Classification with GNNs
- Title(参考訳): 実世界のベンチマークデータセットを超えて - GNNによるノード分類の実証的研究
- Authors: Seiji Maekawa, Koki Noda, Yuya Sasaki, Makoto Onizuka
- Abstract要約: グラフニューラルネットワーク(GNN)はノード分類タスクにおいて大きな成功を収めている。
GNNの既存の評価は、グラフの様々な特性からきめ細かい分析を欠いている。
微粒化解析のための制御特性を持つグラフを生成する合成グラフ生成装置を用いて広範囲な実験を行った。
- 参考スコア(独自算出の注目度): 3.547529079746247
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have achieved great success on a node
classification task. Despite the broad interest in developing and evaluating
GNNs, they have been assessed with limited benchmark datasets. As a result, the
existing evaluation of GNNs lacks fine-grained analysis from various
characteristics of graphs. Motivated by this, we conduct extensive experiments
with a synthetic graph generator that can generate graphs having controlled
characteristics for fine-grained analysis. Our empirical studies clarify the
strengths and weaknesses of GNNs from four major characteristics of real-world
graphs with class labels of nodes, i.e., 1) class size distributions (balanced
vs. imbalanced), 2) edge connection proportions between classes (homophilic vs.
heterophilic), 3) attribute values (biased vs. random), and 4) graph sizes
(small vs. large). In addition, to foster future research on GNNs, we publicly
release our codebase that allows users to evaluate various GNNs with various
graphs. We hope this work offers interesting insights for future research.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)はノード分類タスクにおいて大きな成功を収めている。
GNNの開発と評価には幅広い関心があるが、限られたベンチマークデータセットで評価されている。
その結果、既存のGNNの評価では、グラフの様々な特性からのきめ細かい分析が欠如している。
そこで我々は, 微粒化解析のための制御特性を持つグラフを生成する合成グラフ生成器を用いて, 広範囲な実験を行った。
本研究は,ノードのクラスラベルを持つ実世界グラフの4つの主要特徴からgnnの強みと弱みを明らかにする。
1) クラスサイズの分布(均衡対不均衡)
2) クラス間のエッジ接続比率(ホモフィル性対ヘテロフィル性)
3)属性値(バイアス付き対ランダム)、および
4) グラフサイズ(小さい対大きい)。
さらに,GNNの今後の研究を促進するため,ユーザがさまざまなグラフでさまざまなGNNを評価することのできるコードベースを公開しています。
この研究が今後の研究に興味深い洞察をもたらすことを願っています。
関連論文リスト
- GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - Self-attention Dual Embedding for Graphs with Heterophily [6.803108335002346]
多くの実世界のグラフはヘテロ親和性があり、標準のGNNを用いた分類精度ははるかに低い。
ヘテロ親和性グラフとホモ親和性グラフの両方に有効である新しいGNNを設計する。
我々は,数千から数百万のノードを含む実世界のグラフ上でアルゴリズムを評価し,最先端の結果が得られたことを示す。
論文 参考訳(メタデータ) (2023-05-28T09:38:28Z) - A critical look at the evaluation of GNNs under heterophily: Are we
really making progress? [39.62589602648429]
標準的なグラフニューラルネットワーク(GNN)は、ホモ親和性グラフに対してのみ有効であるとしばしば信じられている。
異種特異的モデルの評価に使用される標準データセットには深刻な欠点があることが示されている。
ヘテロフィリー条件下でのGNNの性能を評価するためのより良いベンチマークとして,我々は様々な特性のヘテロフィラスグラフのセットを提案する。
論文 参考訳(メタデータ) (2023-02-22T20:32:59Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
異種グラフに対するグラフニューラルネットワーク(GNN)の総合的なレビューを提供する。
具体的には,既存の異好性GNNモデルを本質的に支配する系統分類法を提案する。
グラフヘテロフィリーと様々なグラフ研究領域の相関を議論し、より効果的なGNNの開発を促進することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T23:07:47Z) - Imbalanced Graph Classification via Graph-of-Graph Neural Networks [16.589373163769853]
グラフニューラルネットワーク(GNN)は、グラフの分類ラベルを識別するグラフ表現の学習において、前例のない成功を収めている。
本稿では,グラフ不均衡問題を軽減する新しいフレームワークであるグラフ・オブ・グラフニューラルネットワーク(G$2$GNN)を提案する。
提案したG$2$GNNは,F1-macroとF1-microのスコアにおいて,多くのベースラインを約5%上回る性能を示した。
論文 参考訳(メタデータ) (2021-12-01T02:25:47Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
グラフニューラルネットワーク(GNN)は、多数のグラフベースの機械学習タスクに適した学習表現において大きな進歩を見せている。
GNNはホモフィリーな仮定によりうまく機能し、異種ノードが接続する異種グラフへの一般化に失敗したと広く信じられている。
最近の研究は、このような不均一な制限を克服する新しいアーキテクチャを設計し、ベースライン性能の低さと、この概念の証拠として、いくつかの異種グラフベンチマークデータセットに対するアーキテクチャの改善を引用している。
我々の実験では、標準グラフ畳み込みネットワーク(GCN)が実際よりも優れた性能を実現できることを実証的に見出した。
論文 参考訳(メタデータ) (2021-06-11T02:44:00Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。