Causal Inference with Treatment Measurement Error: A Nonparametric
Instrumental Variable Approach
- URL: http://arxiv.org/abs/2206.09186v1
- Date: Sat, 18 Jun 2022 11:47:25 GMT
- Title: Causal Inference with Treatment Measurement Error: A Nonparametric
Instrumental Variable Approach
- Authors: Yuchen Zhu, Limor Gultchin, Arthur Gretton, Matt Kusner, Ricardo Silva
- Abstract summary: We propose a kernel-based nonparametric estimator for the causal effect when the cause is corrupted by error.
We empirically show that our proposed method, MEKIV, improves over baselines and is robust under changes in the strength of measurement error.
- Score: 24.52459180982653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a kernel-based nonparametric estimator for the causal effect when
the cause is corrupted by error. We do so by generalizing estimation in the
instrumental variable setting. Despite significant work on regression with
measurement error, additionally handling unobserved confounding in the
continuous setting is non-trivial: we have seen little prior work. As a
by-product of our investigation, we clarify a connection between mean
embeddings and characteristic functions, and how learning one simultaneously
allows one to learn the other. This opens the way for kernel method research to
leverage existing results in characteristic function estimation. Finally, we
empirically show that our proposed method, MEKIV, improves over baselines and
is robust under changes in the strength of measurement error and to the type of
error distributions.
Related papers
- Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Distributional Shift-Aware Off-Policy Interval Estimation: A Unified
Error Quantification Framework [8.572441599469597]
We study high-confidence off-policy evaluation in the context of infinite-horizon Markov decision processes.
The objective is to establish a confidence interval (CI) for the target policy value using only offline data pre-collected from unknown behavior policies.
We show that our algorithm is sample-efficient, error-robust, and provably convergent even in non-linear function approximation settings.
arXiv Detail & Related papers (2023-09-23T06:35:44Z) - Identifiable causal inference with noisy treatment and no side information [6.432072145009342]
This study proposes a model that assumes a continuous treatment variable that is inaccurately measured.
We prove that our model's causal effect estimates are identifiable, even without side information and knowledge of the measurement error variance.
Our work extends the range of applications in which reliable causal inference can be conducted.
arXiv Detail & Related papers (2023-06-18T18:38:10Z) - Robust Bayesian Inference for Berkson and Classical Measurement Error Models [9.712913056924826]
We propose a nonparametric framework for dealing with measurement error.
It is suitable for both Classical and Berkson error models.
It offers flexibility in the choice of loss function depending on the type of regression model.
arXiv Detail & Related papers (2023-06-02T11:48:15Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
We study the benign overfitting theory in the prediction of the conditional average treatment effect (CATE) with linear regression models.
We show that the T-learner fails to achieve the consistency except the random assignment, while the IPW-learner converges the risk to zero if the propensity score is known.
arXiv Detail & Related papers (2022-02-10T18:51:52Z) - Variance Minimization in the Wasserstein Space for Invariant Causal
Prediction [72.13445677280792]
In this work, we show that the approach taken in ICP may be reformulated as a series of nonparametric tests that scales linearly in the number of predictors.
Each of these tests relies on the minimization of a novel loss function that is derived from tools in optimal transport theory.
We prove under mild assumptions that our method is able to recover the set of identifiable direct causes, and we demonstrate in our experiments that it is competitive with other benchmark causal discovery algorithms.
arXiv Detail & Related papers (2021-10-13T22:30:47Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
We study the off-policy evaluation problem in reinforcement learning with linear function approximation.
We propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration.
arXiv Detail & Related papers (2021-06-22T17:58:46Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
We study the causal data fusion problem, where datasets pertaining to multiple causal graphs are combined to estimate the average treatment effect of a target variable.
We introduce a framework which combines ideas from probabilistic integration and kernel mean embeddings to represent interventional distributions in the reproducing kernel Hilbert space.
arXiv Detail & Related papers (2021-06-07T10:14:18Z) - Doubly Robust Semiparametric Difference-in-Differences Estimators with
High-Dimensional Data [15.27393561231633]
We propose a doubly robust two-stage semiparametric difference-in-difference estimator for estimating heterogeneous treatment effects.
The first stage allows a general set of machine learning methods to be used to estimate the propensity score.
In the second stage, we derive the rates of convergence for both the parametric parameter and the unknown function.
arXiv Detail & Related papers (2020-09-07T15:14:29Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.