Robust Bayesian Inference for Berkson and Classical Measurement Error Models
- URL: http://arxiv.org/abs/2306.01468v2
- Date: Mon, 29 Apr 2024 15:31:33 GMT
- Title: Robust Bayesian Inference for Berkson and Classical Measurement Error Models
- Authors: Charita Dellaporta, Theodoros Damoulas,
- Abstract summary: We propose a nonparametric framework for dealing with measurement error.
It is suitable for both Classical and Berkson error models.
It offers flexibility in the choice of loss function depending on the type of regression model.
- Score: 9.712913056924826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Measurement error occurs when a covariate influencing a response variable is corrupted by noise. This can lead to misleading inference outcomes, particularly in problems where accurately estimating the relationship between covariates and response variables is crucial, such as causal effect estimation. Existing methods for dealing with measurement error often rely on strong assumptions such as knowledge of the error distribution or its variance and availability of replicated measurements of the covariates. We propose a Bayesian Nonparametric Learning framework that is robust to mismeasured covariates, does not require the preceding assumptions, and can incorporate prior beliefs about the error distribution. This approach gives rise to a general framework that is suitable for both Classical and Berkson error models via the appropriate specification of the prior centering measure of a Dirichlet Process (DP). Moreover, it offers flexibility in the choice of loss function depending on the type of regression model. We provide bounds on the generalization error based on the Maximum Mean Discrepancy (MMD) loss which allows for generalization to non-Gaussian distributed errors and nonlinear covariate-response relationships. We showcase the effectiveness of the proposed framework versus prior art in real-world problems containing either Berkson or Classical measurement errors.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Nonlinear Permuted Granger Causality [0.6526824510982799]
Granger causal inference is a contentious but widespread method used in fields ranging from economics to neuroscience.
To allow for out-of-sample comparison, a measure of functional connectivity is explicitly defined using permutations of the covariate set.
Performance of the permutation method is compared to penalized variable selection, naive replacement, and omission techniques via simulation.
arXiv Detail & Related papers (2023-08-11T16:44:16Z) - Identifiable causal inference with noisy treatment and no side information [6.432072145009342]
This study proposes a model that assumes a continuous treatment variable that is inaccurately measured.
We prove that our model's causal effect estimates are identifiable, even without side information and knowledge of the measurement error variance.
Our work extends the range of applications in which reliable causal inference can be conducted.
arXiv Detail & Related papers (2023-06-18T18:38:10Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - The Implicit Delta Method [61.36121543728134]
In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of uncertainty.
We show that the change in the evaluation due to regularization is consistent for the variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference.
arXiv Detail & Related papers (2022-11-11T19:34:17Z) - Causal Inference with Treatment Measurement Error: A Nonparametric
Instrumental Variable Approach [24.52459180982653]
We propose a kernel-based nonparametric estimator for the causal effect when the cause is corrupted by error.
We empirically show that our proposed method, MEKIV, improves over baselines and is robust under changes in the strength of measurement error.
arXiv Detail & Related papers (2022-06-18T11:47:25Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
We study the benign overfitting theory in the prediction of the conditional average treatment effect (CATE) with linear regression models.
We show that the T-learner fails to achieve the consistency except the random assignment, while the IPW-learner converges the risk to zero if the propensity score is known.
arXiv Detail & Related papers (2022-02-10T18:51:52Z) - Decorrelated Variable Importance [0.0]
We propose a method for mitigating the effect of correlation by defining a modified version of LOCO.
This new parameter is difficult to estimate nonparametrically, but we show how to estimate it using semiparametric models.
arXiv Detail & Related papers (2021-11-21T16:31:36Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.