論文の概要: Multi-Modality Image Inpainting using Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2206.09210v1
- Date: Sat, 18 Jun 2022 14:06:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-22 15:30:13.093374
- Title: Multi-Modality Image Inpainting using Generative Adversarial Networks
- Title(参考訳): 生成的対向ネットワークを用いたマルチモーダル画像インパインティング
- Authors: Aref Abedjooy, Mehran Ebrahimi
- Abstract要約: 本稿では,画像インパインティングタスクとマルチモーダルな画像から画像への変換を併用する問題に対処するモデルを提案する。
モデルは、定性的かつ定量的な結果とともに、夜間のイメージ翻訳と塗装の組み合わせで評価される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning techniques, especially Generative Adversarial Networks (GANs)
have significantly improved image inpainting and image-to-image translation
tasks over the past few years. To the best of our knowledge, the problem of
combining the image inpainting task with the multi-modality image-to-image
translation remains intact. In this paper, we propose a model to address this
problem. The model will be evaluated on combined night-to-day image translation
and inpainting, along with promising qualitative and quantitative results.
- Abstract(参考訳): ディープラーニング技術、特にGAN(Generative Adversarial Networks)は、過去数年間で画像インペイントと画像間翻訳タスクを大幅に改善した。
我々の知る限りでは、画像インパインティングタスクとマルチモーダル画像-画像間翻訳を併用する問題はいまだに残っていない。
本稿では,この問題に対処するためのモデルを提案する。
モデルは、定性的かつ定量的な結果とともに、夜間のイメージ翻訳と塗装の組み合わせで評価される。
関連論文リスト
- Many-to-many Image Generation with Auto-regressive Diffusion Models [59.5041405824704]
本稿では,与えられた画像集合から関連画像系列を生成可能な多対多画像生成のためのドメイン汎用フレームワークを提案する。
我々は,25個の相互接続された画像を含む12Mの合成マルチイメージサンプルを含む,新しい大規模マルチイメージデータセットMISを提案する。
我々はM2Mを学習し、M2Mは多対多生成のための自己回帰モデルであり、各画像は拡散フレームワーク内でモデル化される。
論文 参考訳(メタデータ) (2024-04-03T23:20:40Z) - High-Resolution Image Translation Model Based on Grayscale Redefinition [3.6996084306161277]
本稿では,異なる領域間の画像翻訳のための革新的な手法を提案する。
高解像度画像翻訳タスクでは、グレースケール調整法を用いてピクセルレベルの変換を行う。
他のタスクでは、Pix2PixHDモデルを使い、粗大な生成装置、マルチスケールの判別器、画像翻訳性能を向上させるために損失の改善を行う。
論文 参考訳(メタデータ) (2024-03-26T12:21:47Z) - BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed
Dual-Branch Diffusion [61.90969199199739]
BrushNetは、ピクセルレベルのマスク付きイメージ機能を事前訓練されたDMに埋め込むために設計された、新しいプラグアンドプレイデュアルブランチモデルである。
BrushNetは、画像品質、マスク領域保存、テキストコヒーレンスを含む7つの主要な指標で、既存のモデルよりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-03-11T17:59:31Z) - Instruct-Imagen: Image Generation with Multi-modal Instruction [90.04481955523514]
Instruct-imagenは、不均一な画像生成タスクに取り組み、目に見えないタスクを一般化するモデルである。
画像生成のための*multi-modal instruction*を導入する。
画像生成データセットの人間による評価では、インストラクション・イメージはドメイン内の以前のタスク固有のモデルと一致するか、超えている。
論文 参考訳(メタデータ) (2024-01-03T19:31:58Z) - SCONE-GAN: Semantic Contrastive learning-based Generative Adversarial
Network for an end-to-end image translation [18.93434486338439]
SCONE-GANはリアルで多様な風景画像を生成する学習に有効であることが示されている。
より現実的で多様な画像生成のために、スタイル参照画像を導入します。
画像から画像への変換と屋外画像のスタイリングのための提案アルゴリズムを検証した。
論文 参考訳(メタデータ) (2023-11-07T10:29:16Z) - GRIG: Few-Shot Generative Residual Image Inpainting [27.252855062283825]
そこで本研究では,高画質な残像塗装法を新たに提案する。
中心となる考え方は、特徴抽出のために畳み込みニューラルネットワーク(CNN)を組み込んだ反復的残留推論手法を提案することである。
また, 忠実なテクスチャと詳細な外観を創出するための, フォージェリーパッチ対逆訓練戦略を提案する。
論文 参考訳(メタデータ) (2023-04-24T12:19:06Z) - Multi-Modality Image Super-Resolution using Generative Adversarial
Networks [0.0]
画像超解像と多モード画像-画像変換の連立問題に対する解法を提案する。
この問題は、他のモードで同じ画像を低解像度で観察した場合に、高解像度の画像をモダリティで復元するものとして説明できる。
論文 参考訳(メタデータ) (2022-06-18T12:19:31Z) - In&Out : Diverse Image Outpainting via GAN Inversion [89.84841983778672]
image outpaintingは、利用可能なコンテンツを超えて、入力画像の意味的に一貫した拡張を求める。
本研究では、生成的対向ネットワークの反転の観点から問題を定式化する。
私達の発電機はイメージの彼らの共同潜入コードそして個々の位置で調節されるマイクロ パッチをレンダリングします。
論文 参考訳(メタデータ) (2021-04-01T17:59:10Z) - Free-Form Image Inpainting via Contrastive Attention Network [64.05544199212831]
画像の塗装作業では、複雑なパターンを形成する画像のどこにでも、どんな形でもマスクが現れる。
エンコーダはこの複雑な状況下でこのような強力な表現を捕捉することは困難である。
本稿では,ロバスト性と一般化性を改善するための自己教師型シームズ推論ネットワークを提案する。
論文 参考訳(メタデータ) (2020-10-29T14:46:05Z) - Retrieval Guided Unsupervised Multi-domain Image-to-Image Translation [59.73535607392732]
画像から画像への変換は、ある視覚領域から別の領域へ画像を変換するマッピングを学ぶことを目的としている。
本稿では,画像から画像への変換作業を支援するための画像検索システムを提案する。
論文 参考訳(メタデータ) (2020-08-11T20:11:53Z) - Words as Art Materials: Generating Paintings with Sequential GANs [8.249180979158815]
大規模な分散データセット上での芸術画像の生成について検討する。
このデータセットには、形状、色、内容など、バリエーションのあるイメージが含まれている。
本稿では,逐次生成適応型ネットワークモデルを提案する。
論文 参考訳(メタデータ) (2020-07-08T19:17:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。