Model-Agnostic Few-Shot Open-Set Recognition
- URL: http://arxiv.org/abs/2206.09236v1
- Date: Sat, 18 Jun 2022 16:27:59 GMT
- Title: Model-Agnostic Few-Shot Open-Set Recognition
- Authors: Malik Boudiaf, Etienne Bennequin, Myriam Tami, Celine Hudelot, Antoine
Toubhans, Pablo Piantanida, Ismail Ben Ayed
- Abstract summary: We tackle the Few-Shot Open-Set Recognition (FSOSR) problem.
We focus on developing model-agnostic inference methods that can be plugged into any existing model.
We introduce an Open Set Transductive Information Maximization method OSTIM.
- Score: 36.97433312193586
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We tackle the Few-Shot Open-Set Recognition (FSOSR) problem, i.e. classifying
instances among a set of classes for which we only have few labeled samples,
while simultaneously detecting instances that do not belong to any known class.
Departing from existing literature, we focus on developing model-agnostic
inference methods that can be plugged into any existing model, regardless of
its architecture or its training procedure. Through evaluating the embedding's
quality of a variety of models, we quantify the intrinsic difficulty of
model-agnostic FSOSR. Furthermore, a fair empirical evaluation suggests that
the naive combination of a kNN detector and a prototypical classifier ranks
before specialized or complex methods in the inductive setting of FSOSR. These
observations motivated us to resort to transduction, as a popular and practical
relaxation of standard few-shot learning problems. We introduce an Open Set
Transductive Information Maximization method OSTIM, which hallucinates an
outlier prototype while maximizing the mutual information between extracted
features and assignments. Through extensive experiments spanning 5 datasets, we
show that OSTIM surpasses both inductive and existing transductive methods in
detecting open-set instances while competing with the strongest transductive
methods in classifying closed-set instances. We further show that OSTIM's model
agnosticity allows it to successfully leverage the strong expressive abilities
of the latest architectures and training strategies without any hyperparameter
modification, a promising sign that architectural advances to come will
continue to positively impact OSTIM's performances.
Related papers
- High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - EOL: Transductive Few-Shot Open-Set Recognition by Enhancing Outlier Logits [16.081748213657825]
In Few-Shot Learning, models are trained to recognise unseen objects from a query set, given a few labelled examples from a support set.
In this work, we explore the more nuanced and practical challenge of Open-Set Few-Shot Recognition.
arXiv Detail & Related papers (2024-08-04T15:00:22Z) - Informed Decision-Making through Advancements in Open Set Recognition and Unknown Sample Detection [0.0]
Open set recognition (OSR) aims to bring classification tasks in a situation that is more like reality.
This study provides an algorithm exploring a new representation of feature space to improve classification in OSR tasks.
arXiv Detail & Related papers (2024-05-09T15:15:34Z) - Bayesian Exploration of Pre-trained Models for Low-shot Image Classification [14.211305168954594]
This work proposes a simple and effective probabilistic model ensemble framework based on Gaussian processes.
We achieve the integration of prior knowledge by specifying the mean function with CLIP and the kernel function.
We demonstrate that our method consistently outperforms competitive ensemble baselines regarding predictive performance.
arXiv Detail & Related papers (2024-03-30T10:25:28Z) - Out-of-Distribution Detection via Deep Multi-Comprehension Ensemble [11.542472900306745]
Multi-Comprehension (MC) Ensemble is proposed as a strategy to augment the Out-of-Distribution (OOD) feature representation field.
Our experimental results demonstrate the superior performance of the MC Ensemble strategy in OOD detection.
This underscores the effectiveness of our proposed approach in enhancing the model's capability to detect instances outside its training distribution.
arXiv Detail & Related papers (2024-03-24T18:43:04Z) - Exploring Diverse Representations for Open Set Recognition [51.39557024591446]
Open set recognition (OSR) requires the model to classify samples that belong to closed sets while rejecting unknown samples during test.
Currently, generative models often perform better than discriminative models in OSR.
We propose a new model, namely Multi-Expert Diverse Attention Fusion (MEDAF), that learns diverse representations in a discriminative way.
arXiv Detail & Related papers (2024-01-12T11:40:22Z) - Large-scale Pre-trained Models are Surprisingly Strong in Incremental Novel Class Discovery [76.63807209414789]
We challenge the status quo in class-iNCD and propose a learning paradigm where class discovery occurs continuously and truly unsupervisedly.
We propose simple baselines, composed of a frozen PTM backbone and a learnable linear classifier, that are not only simple to implement but also resilient under longer learning scenarios.
arXiv Detail & Related papers (2023-03-28T13:47:16Z) - Open-Set Likelihood Maximization for Few-Shot Learning [36.97433312193586]
We tackle the Few-Shot Open-Set Recognition (FSOSR) problem, i.e. classifying instances among a set of classes for which we only have a few labeled samples.
We explore the popular transductive setting, which leverages the unlabelled query instances at inference.
Motivated by the observation that existing transductive methods perform poorly in open-set scenarios, we propose a generalization of the maximum likelihood principle.
arXiv Detail & Related papers (2023-01-20T01:56:19Z) - Class-Specific Semantic Reconstruction for Open Set Recognition [101.24781422480406]
Open set recognition enables deep neural networks (DNNs) to identify samples of unknown classes.
We propose a novel method, called Class-Specific Semantic Reconstruction (CSSR), that integrates the power of auto-encoder (AE) and prototype learning.
Results of experiments conducted on multiple datasets show that the proposed method achieves outstanding performance in both close and open set recognition.
arXiv Detail & Related papers (2022-07-05T16:25:34Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
We propose Conditional Probabilistic Generative Models (CPGM) for open set recognition.
CPGM can detect unknown samples but also classify known classes by forcing different latent features to approximate conditional Gaussian distributions.
Experiment results on multiple benchmark datasets reveal that the proposed method significantly outperforms the baselines.
arXiv Detail & Related papers (2020-08-12T06:23:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.