A Deep Learning Framework for Solving Hyperbolic Partial Differential
Equations: Part I
- URL: http://arxiv.org/abs/2307.04121v1
- Date: Sun, 9 Jul 2023 08:27:17 GMT
- Title: A Deep Learning Framework for Solving Hyperbolic Partial Differential
Equations: Part I
- Authors: Rajat Arora
- Abstract summary: This research focuses on the development of a physics informed deep learning framework to approximate solutions to nonlinear PDEs.
The framework naturally handles imposition of boundary conditions (Neumann/Dirichlet), entropy conditions, and regularity requirements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics informed neural networks (PINNs) have emerged as a powerful tool to
provide robust and accurate approximations of solutions to partial differential
equations (PDEs). However, PINNs face serious difficulties and challenges when
trying to approximate PDEs with dominant hyperbolic character. This research
focuses on the development of a physics informed deep learning framework to
approximate solutions to nonlinear PDEs that can develop shocks or
discontinuities without any a-priori knowledge of the solution or the location
of the discontinuities. The work takes motivation from finite element method
that solves for solution values at nodes in the discretized domain and use
these nodal values to obtain a globally defined solution field. Built on the
rigorous mathematical foundations of the discontinuous Galerkin method, the
framework naturally handles imposition of boundary conditions
(Neumann/Dirichlet), entropy conditions, and regularity requirements. Several
numerical experiments and validation with analytical solutions demonstrate the
accuracy, robustness, and effectiveness of the proposed framework.
Related papers
- Solving Differential Equations with Constrained Learning [8.522558872274276]
(Partial) differential equations (PDEs) are fundamental tools for describing natural phenomena, making their solution crucial in science and engineering.
Traditional methods, such as the finite element method, provide reliable solutions, but their accuracy is tied to the use of computationally intensive fine meshes.
This paper addresses these challenges by developing a science-constrained learning (SCL) framework.
It demonstrates that finding a (weak) solution of a PDE is equivalent to solving a constrained learning problem with worst-case losses.
arXiv Detail & Related papers (2024-10-30T08:20:39Z) - A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
A physics-driven GraphSAGE approach is presented to solve problems governed by irregular PDEs.
A distance-related edge feature and a feature mapping strategy are devised to help training and convergence.
The robust PDE surrogate model for heat conduction problems parameterized by the Gaussian singularity random field source is successfully established.
arXiv Detail & Related papers (2024-03-13T14:25:15Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
We study the benefits of weight-tied neural network architectures for steady-state PDEs.
We propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE.
arXiv Detail & Related papers (2023-11-30T22:34:57Z) - Deep NURBS -- Admissible Physics-informed Neural Networks [0.0]
We propose a new numerical scheme for physics-informed neural networks (PINNs) that enables precise and inexpensive solution for partial differential equations (PDEs)
The proposed approach combines admissible NURBS parametrizations required to define the physical domain and the Dirichlet boundary conditions with a PINN solver.
arXiv Detail & Related papers (2022-10-25T10:35:45Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
We introduce a practical method to enforce partial differential equation (PDE) constraints for functions defined by neural networks (NNs)
We develop a differentiable PDE-constrained layer that can be incorporated into any NN architecture.
Our results show that incorporating hard constraints directly into the NN architecture achieves much lower test error when compared to training on an unconstrained objective.
arXiv Detail & Related papers (2022-07-18T15:11:43Z) - Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks [0.9137554315375919]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
In PINNs, the residual form of the PDE of interest and its boundary conditions are lumped into a composite objective function as soft penalties.
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach when applied to different kinds of PDEs.
arXiv Detail & Related papers (2022-06-19T04:12:01Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
We propose to expand the solution interval gradually to make the PINN converge to the correct solution.
All ensemble members converge to the same solution in the vicinity of observed data.
We show experimentally that the proposed method can improve the accuracy of the found solution.
arXiv Detail & Related papers (2022-04-11T14:05:34Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach.
We propose a versatile framework that can tackle both inverse and forward problems.
arXiv Detail & Related papers (2021-09-30T05:55:35Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.