Supervision Adaptation Balancing In-distribution Generalization and
Out-of-distribution Detection
- URL: http://arxiv.org/abs/2206.09380v2
- Date: Mon, 2 Oct 2023 09:00:21 GMT
- Title: Supervision Adaptation Balancing In-distribution Generalization and
Out-of-distribution Detection
- Authors: Zhilin Zhao and Longbing Cao and Kun-Yu Lin
- Abstract summary: In-distribution (ID) and out-of-distribution (OOD) samples can lead to textitdistributional vulnerability in deep neural networks.
We introduce a novel textitsupervision adaptation approach to generate adaptive supervision information for OOD samples, making them more compatible with ID samples.
- Score: 36.66825830101456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The discrepancy between in-distribution (ID) and out-of-distribution (OOD)
samples can lead to \textit{distributional vulnerability} in deep neural
networks, which can subsequently lead to high-confidence predictions for OOD
samples. This is mainly due to the absence of OOD samples during training,
which fails to constrain the network properly. To tackle this issue, several
state-of-the-art methods include adding extra OOD samples to training and
assign them with manually-defined labels. However, this practice can introduce
unreliable labeling, negatively affecting ID classification. The distributional
vulnerability presents a critical challenge for non-IID deep learning, which
aims for OOD-tolerant ID classification by balancing ID generalization and OOD
detection. In this paper, we introduce a novel \textit{supervision adaptation}
approach to generate adaptive supervision information for OOD samples, making
them more compatible with ID samples. Firstly, we measure the dependency
between ID samples and their labels using mutual information, revealing that
the supervision information can be represented in terms of negative
probabilities across all classes. Secondly, we investigate data correlations
between ID and OOD samples by solving a series of binary regression problems,
with the goal of refining the supervision information for more distinctly
separable ID classes. Our extensive experiments on four advanced network
architectures, two ID datasets, and eleven diversified OOD datasets demonstrate
the efficacy of our supervision adaptation approach in improving both ID
classification and OOD detection capabilities.
Related papers
- Semantic or Covariate? A Study on the Intractable Case of Out-of-Distribution Detection [70.57120710151105]
We provide a more precise definition of the Semantic Space for the ID distribution.
We also define the "Tractable OOD" setting which ensures the distinguishability of OOD and ID distributions.
arXiv Detail & Related papers (2024-11-18T03:09:39Z) - Going Beyond Conventional OOD Detection [0.0]
Out-of-distribution (OOD) detection is critical to ensure the safe deployment of deep learning models in critical applications.
We present a unified Approach to Spurimatious, fine-grained, and Conventional OOD Detection (ASCOOD)
Our approach effectively mitigates the impact of spurious correlations and encourages capturing fine-grained attributes.
arXiv Detail & Related papers (2024-11-16T13:04:52Z) - What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distribution (OOD) detection aims to identify OOD inputs from unknown classes.
Various scoring functions are proposed to distinguish it from in-distribution (ID) data.
We introduce a novel perspective, i.e., employing different common corruptions on the input space.
arXiv Detail & Related papers (2024-10-24T06:47:28Z) - Diffusion based Semantic Outlier Generation via Nuisance Awareness for Out-of-Distribution Detection [9.936136347796413]
Out-of-distribution (OOD) detection has recently shown promising results through training with synthetic OOD datasets.
We propose a novel framework, Semantic Outlier generation via Nuisance Awareness (SONA), which notably produces challenging outliers.
Our approach incorporates SONA guidance, providing separate control over semantic and nuisance regions of ID samples.
arXiv Detail & Related papers (2024-08-27T07:52:44Z) - Rethinking the Evaluation of Out-of-Distribution Detection: A Sorites Paradox [70.57120710151105]
Most existing out-of-distribution (OOD) detection benchmarks classify samples with novel labels as the OOD data.
Some marginal OOD samples actually have close semantic contents to the in-distribution (ID) sample, which makes determining the OOD sample a Sorites Paradox.
We construct a benchmark named Incremental Shift OOD (IS-OOD) to address the issue.
arXiv Detail & Related papers (2024-06-14T09:27:56Z) - Distilling the Unknown to Unveil Certainty [66.29929319664167]
Out-of-distribution (OOD) detection is essential in identifying test samples that deviate from the in-distribution (ID) data upon which a standard network is trained.
This paper introduces OOD knowledge distillation, a pioneering learning framework applicable whether or not training ID data is available.
arXiv Detail & Related papers (2023-11-14T08:05:02Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
Out-of-distribution (OOD) detection discerns OOD data where the predictor cannot make valid predictions as in-distribution (ID) data.
It is typically hard to collect real out-of-distribution (OOD) data for training a predictor capable of discerning OOD patterns.
We propose a data generation-based learning method named Auxiliary Task-based OOD Learning (ATOL) that can relieve the mistaken OOD generation.
arXiv Detail & Related papers (2023-11-06T16:26:52Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - Pseudo Outlier Exposure for Out-of-Distribution Detection using
Pretrained Transformers [3.8839179829686126]
A rejection network can be trained with ID and diverse outlier samples to detect test OOD samples.
We propose a method called Pseudo Outlier Exposure (POE) that constructs a surrogate OOD dataset by sequentially masking tokens related to ID classes.
Our method does not require any external OOD data and can be easily implemented within off-the-shelf Transformers.
arXiv Detail & Related papers (2023-07-18T17:29:23Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
Out-of-distribution (OOD) detection is important for machine learning models deployed in the wild.
Recent methods use auxiliary outlier data to regularize the model for improved OOD detection.
We propose a novel framework that leverages wild mixture data -- that naturally consists of both ID and OOD samples.
arXiv Detail & Related papers (2022-02-07T15:38:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.