Training Deep Spiking Neural Networks
- URL: http://arxiv.org/abs/2006.04436v1
- Date: Mon, 8 Jun 2020 09:47:05 GMT
- Title: Training Deep Spiking Neural Networks
- Authors: Eimantas Ledinauskas (1), Julius Ruseckas (1), Alfonsas Jur\v{s}\.enas
(1), Giedrius Bura\v{c}as (2) ((1) Baltic Institute of Advanced Technology,
Lithuania, (2) SRI International, USA)
- Abstract summary: Brain-inspired spiking neural networks (SNNs) with neuromorphic hardware may offer orders of magnitude higher energy efficiency.
We show that is is possible to train SNN with ResNet50 architecture on CIFAR100 and Imagenette object recognition datasets.
The trained SNN falls behind in accuracy compared to analogous ANN but requires several orders of magnitude less inference time steps.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computation using brain-inspired spiking neural networks (SNNs) with
neuromorphic hardware may offer orders of magnitude higher energy efficiency
compared to the current analog neural networks (ANNs). Unfortunately, training
SNNs with the same number of layers as state of the art ANNs remains a
challenge. To our knowledge the only method which is successful in this regard
is supervised training of ANN and then converting it to SNN. In this work we
directly train deep SNNs using backpropagation with surrogate gradient and find
that due to implicitly recurrent nature of feed forward SNN's the exploding or
vanishing gradient problem severely hinders their training. We show that this
problem can be solved by tuning the surrogate gradient function. We also
propose using batch normalization from ANN literature on input currents of SNN
neurons. Using these improvements we show that is is possible to train SNN with
ResNet50 architecture on CIFAR100 and Imagenette object recognition datasets.
The trained SNN falls behind in accuracy compared to analogous ANN but requires
several orders of magnitude less inference time steps (as low as 10) to reach
good accuracy compared to SNNs obtained by conversion from ANN which require on
the order of 1000 time steps.
Related papers
- NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
We propose a novel neural architecture search scheme for binary neural networks, named NAS-BNN.
Our discovered binary model family outperforms previous BNNs for a wide range of operations (OPs) from 20M to 200M.
In addition, we validate the transferability of these searched BNNs on the object detection task, and our binary detectors with the searched BNNs achieve a novel state-of-the-art result, e.g., 31.6% mAP with 370M OPs, on MS dataset.
arXiv Detail & Related papers (2024-08-28T02:17:58Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
We show that our algorithm can achieve a near-perfect mapping between the activation values of an ANN and the spike times of an SNN on a number of challenging AI tasks.
The study paves the way for deploying ultra-low-power TTFS-based SNNs on power-constrained edge computing platforms.
arXiv Detail & Related papers (2023-10-23T14:26:16Z) - Joint A-SNN: Joint Training of Artificial and Spiking Neural Networks
via Self-Distillation and Weight Factorization [12.1610509770913]
Spiking Neural Networks (SNNs) mimic the spiking nature of brain neurons.
We propose a joint training framework of ANN and SNN, in which the ANN can guide the SNN's optimization.
Our method consistently outperforms many other state-of-the-art training methods.
arXiv Detail & Related papers (2023-05-03T13:12:17Z) - LaSNN: Layer-wise ANN-to-SNN Distillation for Effective and Efficient
Training in Deep Spiking Neural Networks [7.0691139514420005]
Spiking Neural Networks (SNNs) are biologically realistic and practically promising in low-power because of their event-driven mechanism.
A conversion scheme is proposed to obtain competitive accuracy by mapping trained ANNs' parameters to SNNs with the same structures.
A novel SNN training framework is proposed, namely layer-wise ANN-to-SNN knowledge distillation (LaSNN)
arXiv Detail & Related papers (2023-04-17T03:49:35Z) - Optimal ANN-SNN Conversion for High-accuracy and Ultra-low-latency
Spiking Neural Networks [22.532709609646066]
Spiking Neural Networks (SNNs) have gained great attraction due to their distinctive properties of low power consumption and fast inference on neuromorphic hardware.
As the most effective method to get deep SNNs, ANN-SNN conversion has achieved comparable performance as ANNs on large-scale datasets.
In this paper, we theoretically analyze ANN-SNN conversion error and derive the estimated activation function of SNNs.
We prove that the expected conversion error between SNNs and ANNs is zero, enabling us to achieve high-accuracy and ultra-low-latency SNN
arXiv Detail & Related papers (2023-03-08T03:04:53Z) - SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking
Neural Networks [117.56823277328803]
Spiking neural networks are efficient computation models for low-power environments.
We propose a SNN-to-ANN (SNN2ANN) framework to train the SNN in a fast and memory-efficient way.
Experiment results show that our SNN2ANN-based models perform well on the benchmark datasets.
arXiv Detail & Related papers (2022-06-19T16:52:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Spiking neural networks trained via proxy [0.696125353550498]
We propose a new learning algorithm to train spiking neural networks (SNN) using conventional artificial neural networks (ANN) as proxy.
We couple two SNN and ANN networks, respectively, made of integrate-and-fire (IF) and ReLU neurons with the same network architectures and shared synaptic weights.
By assuming IF neuron with rate-coding as an approximation of ReLU, we backpropagate the error of the SNN in the proxy ANN to update the shared weights, simply by replacing the ANN final output with that of the SNN.
arXiv Detail & Related papers (2021-09-27T17:29:51Z) - Optimal Conversion of Conventional Artificial Neural Networks to Spiking
Neural Networks [0.0]
Spiking neural networks (SNNs) are biology-inspired artificial neural networks (ANNs)
We propose a novel strategic pipeline that transfers the weights to the target SNN by combining threshold balance and soft-reset mechanisms.
Our method is promising to get implanted onto embedded platforms with better support of SNNs with limited energy and memory.
arXiv Detail & Related papers (2021-02-28T12:04:22Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.