論文の概要: Policy Optimization with Linear Temporal Logic Constraints
- arxiv url: http://arxiv.org/abs/2206.09546v1
- Date: Mon, 20 Jun 2022 02:58:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-25 16:06:54.944278
- Title: Policy Optimization with Linear Temporal Logic Constraints
- Title(参考訳): 線形時相論理制約によるポリシー最適化
- Authors: Cameron Voloshin, Hoang M. Le, Swarat Chaudhuri, Yisong Yue
- Abstract要約: 本稿では,線形時間論理制約を用いた政策最適化の問題点について考察する。
我々は,タスク満足度とコスト最適性の両方を保証するために,サンプル複雑性分析を楽しむモデルベースアプローチを開発した。
- 参考スコア(独自算出の注目度): 37.27882290236194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of policy optimization (PO) with linear temporal logic
(LTL) constraints. The language of LTL allows flexible description of tasks
that may be unnatural to encode as a scalar cost function. We consider
LTL-constrained PO as a systematic framework, decoupling task specification
from policy selection, and an alternative to the standard of cost shaping. With
access to a generative model, we develop a model-based approach that enjoys a
sample complexity analysis for guaranteeing both task satisfaction and cost
optimality (through a reduction to a reachability problem). Empirically, our
algorithm can achieve strong performance even in low sample regimes.
- Abstract(参考訳): 線形時間論理(LTL)制約を用いた政策最適化(PO)問題について検討する。
LTLの言語は、スカラーコスト関数としてエンコードするのが不自然なタスクの柔軟な記述を可能にする。
我々は,LTL制約のPOを体系的なフレームワークとみなし,タスク仕様を政策選択から切り離し,コストシェーピングの標準の代替品とみなす。
生成モデルへのアクセスにより、タスク満足度とコスト最適性の両方を(到達可能性問題への還元を通じて)保証する、サンプル複雑性分析を楽しむモデルベースのアプローチを開発する。
実験によって,本アルゴリズムは低サンプル状態でも高い性能を達成できる。
関連論文リスト
- Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
本稿では,属性制御付き大規模言語モデル(LLM)の制約学習スキーマを提案する。
提案手法は, ベンチマーク上での競合性能と毒性検出タスクを達成しながら, 不適切な応答を少ないLCMに導出することを示す。
論文 参考訳(メタデータ) (2024-10-07T23:38:58Z) - DeepLTL: Learning to Efficiently Satisfy Complex LTL Specifications [59.01527054553122]
リニア時間論理(LTL)は、強化学習(RL)における複雑で時間的に拡張されたタスクを特定する強力なフォーマリズムとして最近採用されている。
既存のアプローチはいくつかの欠点に悩まされており、それらは有限水平フラグメントにのみ適用でき、最適以下の解に制限され、安全制約を適切に扱えない。
本研究では,これらの問題に対処するための新しい学習手法を提案する。
提案手法は, 自動仕様のセマンティクスを明示的に表現したB"uchiaの構造を利用して, 所望の式を満たすための真理代入の順序を条件としたポリシーを学習する。
論文 参考訳(メタデータ) (2024-10-06T21:30:38Z) - Directed Exploration in Reinforcement Learning from Linear Temporal Logic [59.707408697394534]
リニア時間論理(LTL)は強化学習におけるタスク仕様のための強力な言語である。
合成された報酬信号は基本的に疎結合であり,探索が困難であることを示す。
我々は、仕様をさらに活用し、それに対応するリミット決定性B"uchi Automaton(LDBA)をマルコフ報酬プロセスとしてキャストすることで、よりよい探索を実現することができることを示す。
論文 参考訳(メタデータ) (2024-08-18T14:25:44Z) - LinearAPT: An Adaptive Algorithm for the Fixed-Budget Thresholding
Linear Bandit Problem [4.666048091337632]
本稿では、Thresholding Linear Bandit(TLB)問題の固定予算設定のために設計された新しいアルゴリズムであるLinearAPTを提案する。
コントリビューションでは、LinearAPTの適応性、単純性、計算効率を強調しており、複雑なシーケンシャルな意思決定課題に対処するためのツールキットとして貴重なものとなっている。
論文 参考訳(メタデータ) (2024-03-10T15:01:50Z) - Solving Multistage Stochastic Linear Programming via Regularized Linear
Decision Rules: An Application to Hydrothermal Dispatch Planning [77.34726150561087]
AdaSO(Adaptive least absolute shrinkage and selection operator)に基づく線形決定規則(LDR)の新しい正規化手法を提案する。
実験により、MSLPを解くために古典的な非正規化LDRを使用する場合、過度に適合する脅威は無視できないことが示された。
LHDP問題に対しては、非正規化ベンチマークと比較して、提案したフレームワークの次の利点を強調した。
論文 参考訳(メタデータ) (2021-10-07T02:36:14Z) - Reinforcement Learning Based Temporal Logic Control with Maximum
Probabilistic Satisfaction [5.337302350000984]
本稿では,制御ポリシを合成するモデルレス強化学習アルゴリズムを提案する。
RLをベースとした制御合成の有効性をシミュレーションおよび実験により実証した。
論文 参考訳(メタデータ) (2020-10-14T03:49:16Z) - Teaching the Old Dog New Tricks: Supervised Learning with Constraints [18.88930622054883]
機械学習に制約サポートを追加することは、データ駆動型AIシステムにおいて際立った問題に対処する可能性がある。
既存のアプローチでは、MLトレーニングに制約付き最適化手法を適用し、モデル設計を調整することによって制約満足度を強制するか、あるいは出力を修正するために制約を使用するのが一般的である。
そこで本研究では,教師付きML手法に対する制約満足度を,最先端制約解決器の直接利用により,それぞれ異なる,補完的な制約満足度に基づく戦略について検討する。
論文 参考訳(メタデータ) (2020-02-25T09:47:39Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。