Finite-group gauge theories on lattices as Hamiltonian systems with
constraints
- URL: http://arxiv.org/abs/2206.09775v6
- Date: Sat, 25 Mar 2023 02:35:50 GMT
- Title: Finite-group gauge theories on lattices as Hamiltonian systems with
constraints
- Authors: M. F. Araujo de Resende
- Abstract summary: lattice gauge theories are defined on $ n $-dimensional lattices by using finite gauge groups.
We show how they can be interpreted as a Hamiltonian system with constraints, analogous to what happens with the classical (continuous) gauge (field) theories.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a brief but insightful overview of the gauge
theories, which are defined on $ n $-dimensional lattices by using finite gauge
groups, in order to show how they can be interpreted as a Hamiltonian system
with constraints, analogous to what happens with the classical (continuous)
gauge (field) theories. As this interpretation is not usually explored in the
literature that discusses/introduces the concept of lattice gauge theory, but
some recent works have been exploring Hamiltonian models in order to support
some kind of quantum computation, we use this interpretation to, for example,
present a brief geometric view of one class of these models: the Kitaev Quantum
Double Models.
Related papers
- Relaxation of first-class constraints and the quantization of gauge theories: from "matter without matter" to the reappearance of time in quantum gravity [72.27323884094953]
We make a conceptual overview of an approach to the initial-value problem in canonical gauge theories.
We stress how the first-class phase-space constraints may be relaxed if we interpret them as fixing the values of new degrees of freedom.
arXiv Detail & Related papers (2024-02-19T19:00:02Z) - A new basis for Hamiltonian SU(2) simulations [0.0]
We develop a new basis suitable for the simulation of an SU(2) lattice gauge theory in the maximal tree gauge.
We show how to perform a Hamiltonian truncation so that the eigenvalues of both the magnetic and electric gauge-fixed Hamiltonian are mostly preserved.
arXiv Detail & Related papers (2023-07-21T18:03:26Z) - Convergence of Dynamics on Inductive Systems of Banach Spaces [68.8204255655161]
Examples are phase transitions in the thermodynamic limit, the emergence of classical mechanics from quantum theory at large action, and continuum quantum field theory arising from renormalization group fixed points.
We present a flexible modeling tool for the limit of theories: soft inductive limits constituting a generalization of inductive limits of Banach spaces.
arXiv Detail & Related papers (2023-06-28T09:52:20Z) - String-net formulation of Hamiltonian lattice Yang-Mills theories and
quantum many-body scars in a nonabelian gauge theory [0.0]
We study the Hamiltonian lattice Yang-Mills theory based on spin networks.
We study quantum scars in a nonabelian gauge theory.
arXiv Detail & Related papers (2023-05-10T07:45:43Z) - Hamiltonians and gauge-invariant Hilbert space for lattice
Yang-Mills-like theories with finite gauge group [0.0]
We show that the electric Hamiltonian admits an interpretation as a certain natural, non-unique Laplacian operator on the finite Abelian or non-Abelian group.
We illustrate the use of the gauge-invariant basis to diagonalize a dihedral gauge theory on a small periodic lattice.
arXiv Detail & Related papers (2023-01-28T15:16:33Z) - New insights on the quantum-classical division in light of Collapse
Models [63.942632088208505]
We argue that the division between quantum and classical behaviors is analogous to the division of thermodynamic phases.
A specific relationship between the collapse parameter $(lambda)$ and the collapse length scale ($r_C$) plays the role of the coexistence curve in usual thermodynamic phase diagrams.
arXiv Detail & Related papers (2022-10-19T14:51:21Z) - Entanglement Witnessing for Lattice Gauge Theories [0.0]
Entanglement is assuming a central role in modern quantum many-body physics.
We develop the theoretical framework of entanglement witnessing for lattice gauge theories.
We illustrate the concept at the example of a $mathrmU(1)$ lattice gauge theory in 2+1 dimensions.
arXiv Detail & Related papers (2022-07-01T18:01:21Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Non-Abelian gauge invariance from dynamical decoupling [0.0]
We employ a coherent quantum control scheme to enforce non-Abelian gauge invariance.
We discuss this idea in detail for a one dimensional SU(2) lattice gauge system.
arXiv Detail & Related papers (2020-12-15T21:26:14Z) - Tensor network models of AdS/qCFT [69.6561021616688]
We introduce the notion of a quasiperiodic conformal field theory (qCFT)
We show that qCFT can be best understood as belonging to a paradigm of discrete holography.
arXiv Detail & Related papers (2020-04-08T18:00:05Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.