Variational Quantum and Quantum-Inspired Clustering
- URL: http://arxiv.org/abs/2206.09893v2
- Date: Fri, 5 Jan 2024 17:25:03 GMT
- Title: Variational Quantum and Quantum-Inspired Clustering
- Authors: Pablo Bermejo, Roman Orus
- Abstract summary: We present a quantum algorithm for clustering data based on a variational quantum circuit.
The algorithm allows to classify data into many clusters, and can easily be implemented in few-qubit Noisy Intermediate-Scale Quantum (NISQ) devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Here we present a quantum algorithm for clustering data based on a
variational quantum circuit. The algorithm allows to classify data into many
clusters, and can easily be implemented in few-qubit Noisy Intermediate-Scale
Quantum (NISQ) devices. The idea of the algorithm relies on reducing the
clustering problem to an optimization, and then solving it via a Variational
Quantum Eigensolver (VQE) combined with non-orthogonal qubit states. In
practice, the method uses maximally-orthogonal states of the target Hilbert
space instead of the usual computational basis, allowing for a large number of
clusters to be considered even with few qubits. We benchmark the algorithm with
numerical simulations using real datasets, showing excellent performance even
with one single qubit. Moreover, a tensor network simulation of the algorithm
implements, by construction, a quantum-inspired clustering algorithm that can
run on current classical hardware.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Variational Quantum Algorithms for the Allocation of Resources in a Cloud/Edge Architecture [1.072460284847973]
We show that Variational Quantum Algorithms can be a viable alternative to classical algorithms in the near future.
In particular, we compare the performances, in terms of success probability, of two algorithms, i.e., Quantum Approximate Optimization Algorithm (QAOA) and Variational Quantum Eigensolver (VQE)
The simulation experiments, performed for a set of simple problems, %CM230124 that involve a Cloud and two Edge nodes, show that the VQE algorithm ensures better performances when it is equipped with appropriate circuit textitansatzes that are able to restrict the search space
arXiv Detail & Related papers (2024-01-25T17:37:40Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Quantum spectral clustering algorithm for unsupervised learning [0.8399688944263843]
We propose a circuit design to implement spectral clustering on a quantum processor with a substantial speedup.
Compared with the established quantum $k$-means algorithms, our method does not require a quantum random access memory or a quantum adiabatic process.
arXiv Detail & Related papers (2022-03-07T05:06:47Z) - Quantum Optimization of Maximum Independent Set using Rydberg Atom
Arrays [39.76254807200083]
We experimentally investigate quantum algorithms for solving the Maximum Independent Set problem.
We find the problem hardness is controlled by the solution degeneracy and number of local minima.
On the hardest graphs, we observe a superlinear quantum speedup in finding exact solutions.
arXiv Detail & Related papers (2022-02-18T19:00:01Z) - Variational Quantum Eigensolver with Reduced Circuit Complexity [3.1158760235626946]
We present a novel approach to reduce quantum circuit complexity in VQE for electronic structure calculations.
Our algorithm, called ClusterVQE, splits the initial qubit space into subspaces (qubit clusters) which are further distributed on individual quantum circuits.
The new algorithm simultaneously reduces the number of qubits and circuit depth, making it a potential leader for quantum chemistry simulations on NISQ devices.
arXiv Detail & Related papers (2021-06-14T17:23:46Z) - Quantum K-medians Algorithm Using Parallel Euclidean Distance Estimator [0.0]
This paper proposes an efficient quantum k-medians clustering algorithm using the powerful quantum Euclidean estimator algorithm.
The proposed quantum k-medians algorithm has provided an exponential speed up as compared to the classical version of it.
arXiv Detail & Related papers (2020-12-21T06:38:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.