Quantum Approximate Optimisation Applied to Graph Similarity
- URL: http://arxiv.org/abs/2412.17309v1
- Date: Mon, 23 Dec 2024 06:04:08 GMT
- Title: Quantum Approximate Optimisation Applied to Graph Similarity
- Authors: Nicholas J. Pritchard,
- Abstract summary: We introduce a novel quantum optimisation simulation package facilitating investigation of all constituent components of the QAOA.
We investigate eight classical optimisation methods each at six levels of decomposition.
An encoding for permutation based problems such as graph similarity through edge overlap to the QAOA allows for significant quantum memory savings.
- Score: 0.0
- License:
- Abstract: Quantum computing promises solutions to classically difficult and new-found problems through controlling the subtleties of quantum computing. The Quantum Approximate Optimisation Algorithm (QAOA) is a recently proposed quantum algorithm designed to tackle difficult combinatorial optimisation problems utilising both quantum and classical computation. The hybrid nature, generality and typically low gate-depth make it a strong candidate for near-term implementation in quantum computing. Finding the practical limits of the algorithm is currently an open problem. Until now, no tools to facilitate the design and validation of probabilistic quantum optimisation algorithms such as the QAOA on a non-trivial scale exist. Graph similarity is a long standing classically difficult problem withstanding decades of research from academia and industry. Determining the maximal edge overlap between all possible node label permutations is an NP-Complete task and provides an apt measure of graph similarity. We introduce a novel quantum optimisation simulation package facilitating investigation of all constituent components of the QAOA from desktop to cluster scale using graph similarity as an example. Our simulation provides flexibility and performance. We investigate eight classical optimisation methods each at six levels of decomposition. Moreover an encoding for permutation based problems such as graph similarity through edge overlap to the QAOA allows for significant quantum memory savings at the cost of additional operations. This compromise extends into the classical portion of the algorithm as the inclusion of infeasible solutions creates a challenging cost-function landscape. We present performance analysis of our simulation and of the QAOA setting a precedent for investigating and validating numerous other difficult problems to the QAOA as we move towards realising practical quantum computation.
Related papers
- Variational Quantum Algorithm for Constrained Topology Optimization in Quantum Scientific Computing [3.6190123930006317]
We propose a novel variational quantum algorithm for topology optimization through quantum entanglement.
The algorithm is demonstrated with compliance minimization problems including truss structures and Messerschmitt-B"olkow-Blohm beams.
arXiv Detail & Related papers (2024-12-10T01:38:40Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Variational Quantum Algorithms for Combinatorial Optimization [0.571097144710995]
Variational Algorithms (VQA) have emerged as one of the strongest candidates towards reaching practical applicability of NISQ systems.
This paper explores the current state and recent developments of VQAs, emphasizing their applicability to Approximate optimization.
We implement QAOA circuits with varying depths to solve the MaxCut problem on graphs with 10 and 20 nodes.
arXiv Detail & Related papers (2024-07-08T22:02:39Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Variational Quantum Algorithms for the Allocation of Resources in a Cloud/Edge Architecture [1.072460284847973]
We show that Variational Quantum Algorithms can be a viable alternative to classical algorithms in the near future.
In particular, we compare the performances, in terms of success probability, of two algorithms, i.e., Quantum Approximate Optimization Algorithm (QAOA) and Variational Quantum Eigensolver (VQE)
The simulation experiments, performed for a set of simple problems, %CM230124 that involve a Cloud and two Edge nodes, show that the VQE algorithm ensures better performances when it is equipped with appropriate circuit textitansatzes that are able to restrict the search space
arXiv Detail & Related papers (2024-01-25T17:37:40Z) - NISQ-compatible approximate quantum algorithm for unconstrained and
constrained discrete optimization [0.0]
We present an approximate gradient-based quantum algorithm for hardware-efficient circuits with amplitude encoding.
We show how simple linear constraints can be directly incorporated into the circuit without additional modification of the objective function with penalty terms.
arXiv Detail & Related papers (2023-05-23T16:17:57Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.