論文の概要: One-stage Action Detection Transformer
- arxiv url: http://arxiv.org/abs/2206.10080v1
- Date: Tue, 21 Jun 2022 02:24:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-22 14:07:34.335856
- Title: One-stage Action Detection Transformer
- Title(参考訳): ワンステージ動作検出トランス
- Authors: Lijun Li, Li'an Zhuo, Bang Zhang
- Abstract要約: ビデオセグメントの時間的接続をモデル化するために, ワンステージ動作検出変換器(OADT)を提案する。
我々のモデルは21.28%のアクションmAPに到達し、アクション検出チャレンジのテストセットで第1位にランク付けできる。
- 参考スコア(独自算出の注目度): 9.710611055094303
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work, we introduce our solution to the EPIC-KITCHENS-100 2022 Action
Detection challenge. One-stage Action Detection Transformer (OADT) is proposed
to model the temporal connection of video segments. With the help of OADT, both
the category and time boundary can be recognized simultaneously. After
ensembling multiple OADT models trained from different features, our model can
reach 21.28\% action mAP and ranks the 1st on the test-set of the Action
detection challenge.
- Abstract(参考訳): 本稿では,epic-kitchens-100 2022 アクション検出チャレンジのソリューションを紹介する。
ビデオセグメントの時間的接続をモデル化するために, ワンステージ動作検出変換器(OADT)を提案する。
OADTの助けを借りて、カテゴリと時間の境界を同時に認識することができる。
異なる特徴からトレーニングされた複数のOADTモデルをアンサンブルした後、我々のモデルは21.28\%のアクションmAPに達し、アクション検出チャレンジのテストセットで1位になる。
関連論文リスト
- Technical Report for ActivityNet Challenge 2022 -- Temporal Action Localization [20.268572246761895]
本稿では,各アクションの時間的境界を特定し,未トリミングビデオにおけるアクションクラスを予測することを提案する。
Faster-TADは、TADのパイプラインを単純化し、素晴らしいパフォーマンスを得る。
論文 参考訳(メタデータ) (2024-10-31T14:16:56Z) - Harnessing Temporal Causality for Advanced Temporal Action Detection [53.654457142657236]
本稿では,因果的注意と因果的マンバを組み合わせたCausalTADを提案する。
Ego4D Challenge 2024では,EPIC-Kitchens Challenge 2024では行動認識,行動検出,音声によるインタラクション検出トラックで1位,Ego4D Challenge 2024ではMoment Queriesトラックで1位にランクインした。
論文 参考訳(メタデータ) (2024-07-25T06:03:02Z) - ZJU ReLER Submission for EPIC-KITCHEN Challenge 2023: Semi-Supervised
Video Object Segmentation [62.98078087018469]
マルチ機能スケールでトランスフォーマーを組み込んだAOTフレームワークの派生版であるMSDeAOTを紹介する。
MSDeAOTは16のストライドを持つ特徴尺度を用いて、以前のフレームから現在のフレームへ効率的にオブジェクトマスクを伝搬する。
また,GPMを8ストライドで改良した機能スケールで採用することで,小型物体の検出・追跡の精度が向上した。
論文 参考訳(メタデータ) (2023-07-05T03:43:15Z) - DOAD: Decoupled One Stage Action Detection Network [77.14883592642782]
人々をローカライズし、ビデオからアクションを認識することは、ハイレベルなビデオ理解にとって難しい課題だ。
既存の手法は主に2段階ベースで、1段階は人物境界ボックス生成、もう1段階は行動認識を行う。
本稿では、時間的行動検出の効率を向上させるために、DOADと呼ばれる分離したワンステージネットワークを提案する。
論文 参考訳(メタデータ) (2023-04-01T08:06:43Z) - Vision Transformer for Action Units Detection [11.479653866646762]
本稿では,行動単位検出(AU)の課題に対処するためのビジョントランスフォーマーに基づくアプローチを提案する。
我々はビデオビジョン変換器(ViViT)ネットワークを用いて、映像の時間的顔の変化を捉える。
我々のモデルはABAW 2023チャレンジのベースラインモデルよりも優れており、結果として顕著な14%の違いがある。
論文 参考訳(メタデータ) (2023-03-16T13:43:02Z) - Actor-identified Spatiotemporal Action Detection -- Detecting Who Is
Doing What in Videos [29.5205455437899]
ビデオ中の各アクションの開始時刻と終了時刻を推定するために、TAD(Temporal Action Detection)が検討されている。
時空間行動検出 (SAD) は, 映像の空間的, 時間的両方の行動の局所化を目的として研究されている。
SADアクター識別のギャップを埋める新しいタスクであるActor-identified Spatiotemporal Action Detection (ASAD)を提案する。
論文 参考訳(メタデータ) (2022-08-27T06:51:12Z) - E^2TAD: An Energy-Efficient Tracking-based Action Detector [78.90585878925545]
本稿では,事前定義されたキーアクションを高精度かつ効率的にローカライズするためのトラッキングベースソリューションを提案する。
UAV-Video Track of 2021 Low-Power Computer Vision Challenge (LPCVC)で優勝した。
論文 参考訳(メタデータ) (2022-04-09T07:52:11Z) - End-to-end Temporal Action Detection with Transformer [86.80289146697788]
時間的アクション検出(TAD)は、トリミングされていないビデオにおいて、すべてのアクションインスタンスのセマンティックラベルとバウンダリを決定することを目的としている。
そこで我々は,textitTadTR と呼ばれる Transformer によるTAD のエンドツーエンドフレームワークを構築した。
本手法は,HACSセグメンツとTHUMOS14の最先端性能とActivityNet-1.3の競合性能を実現する。
論文 参考訳(メタデータ) (2021-06-18T17:58:34Z) - A Stronger Baseline for Ego-Centric Action Detection [38.934802199184354]
本稿では,CVPR2021ワークショップ主催のEPIC-KITCHENS-100コンペティションで使用した,エゴセントリックなビデオアクション検出手法について分析する。
我々の課題は、長い未トリミングビデオでアクションの開始時刻と終了時刻を特定し、アクションカテゴリを予測することである。
我々は、ショートデュレーションアクションに適応できる提案を生成するためにスライディングウインドウ戦略を採用する。
論文 参考訳(メタデータ) (2021-06-13T08:11:31Z) - Spatio-Temporal Action Detection with Multi-Object Interaction [127.85524354900494]
本稿では,多目的インタラクションを用いたS時間動作検出問題について検討する。
マルチオブジェクトインタラクションを含むアクションチューブに空間的アノテーションを付加した新しいデータセットを提案する。
本研究では,空間的・時間的回帰を同時に行うエンド・ツー・エンドの時間的行動検出モデルを提案する。
論文 参考訳(メタデータ) (2020-04-01T00:54:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。