The Many-Worlds Calculus
- URL: http://arxiv.org/abs/2206.10234v4
- Date: Fri, 25 Oct 2024 16:57:24 GMT
- Title: The Many-Worlds Calculus
- Authors: Kostia Chardonnet, Marc de Visme, BenoƮt Valiron, Renaud Vilmart,
- Abstract summary: We propose a colored PROP to model computation in this framework.
The model can support regular tests, probabilistic and non-deterministic branching, as well as quantum branching.
We prove the language to be universal, and the equational theory to be complete with respect to this semantics.
- Score: 0.0
- License:
- Abstract: In this paper, we explore the interaction between two monoidal structures: a multiplicative one, for the encoding of pairing, and an additive one, for the encoding of choice. We propose a colored PROP to model computation in this framework, where the choice is parameterized by an algebraic side effect: the model can support regular tests, probabilistic and non-deterministic branching, as well as quantum branching, i.e. superposition. The graphical language comes equipped with a denotational semantics based on linear applications, and an equational theory. We prove the language to be universal, and the equational theory to be complete with respect to this semantics.
Related papers
- Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations [56.78271181959529]
Generalized Additive Models (GAMs) can capture non-linear relationships between variables and targets, but they cannot capture intricate feature interactions.
We propose Shape Expressions Arithmetic ( SHAREs) that fuses GAM's flexible shape functions with the complex feature interactions found in mathematical expressions.
We also design a set of rules for constructing SHAREs that guarantee transparency of the found expressions beyond the standard constraints.
arXiv Detail & Related papers (2024-04-15T13:44:01Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
We propose rational meaning construction, a computational framework for language-informed thinking.
We frame linguistic meaning as a context-sensitive mapping from natural language into a probabilistic language of thought.
We show that LLMs can generate context-sensitive translations that capture pragmatically-appropriate linguistic meanings.
We extend our framework to integrate cognitively-motivated symbolic modules.
arXiv Detail & Related papers (2023-06-22T05:14:00Z) - Lexinvariant Language Models [84.2829117441298]
Token embeddings, a mapping from discrete lexical symbols to continuous vectors, are at the heart of any language model (LM)
We study textitlexinvariantlanguage models that are invariant to lexical symbols and therefore do not need fixed token embeddings in practice.
We show that a lexinvariant LM can attain perplexity comparable to that of a standard language model, given a sufficiently long context.
arXiv Detail & Related papers (2023-05-24T19:10:46Z) - Mathematical Foundations for a Compositional Account of the Bayesian
Brain [0.0]
We use the tools of contemporary applied category theory to supply functorial semantics for approximate inference.
We define fibrations of statistical games and classify various problems of statistical inference as corresponding sections.
We construct functors which explain the compositional structure of predictive coding neural circuits under the free energy principle.
arXiv Detail & Related papers (2022-12-23T18:58:17Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
We show that learning a small neural network to perform canonicalization is better than using predefineds.
Our experiments show that learning the canonicalization function is competitive with existing techniques for learning equivariant functions across many tasks.
arXiv Detail & Related papers (2022-11-11T21:58:15Z) - Multiparameter Persistent Homology-Generic Structures and Quantum
Computing [0.0]
This article is an application of commutative algebra to the study of persistent homology in topological data analysis.
The generic structure of such resolutions and the classifying spaces are studied using results spanning several decades of research.
arXiv Detail & Related papers (2022-10-20T17:30:20Z) - Learning Algebraic Recombination for Compositional Generalization [71.78771157219428]
We propose LeAR, an end-to-end neural model to learn algebraic recombination for compositional generalization.
Key insight is to model the semantic parsing task as a homomorphism between a latent syntactic algebra and a semantic algebra.
Experiments on two realistic and comprehensive compositional generalization demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2021-07-14T07:23:46Z) - A Study of Continuous Vector Representationsfor Theorem Proving [2.0518509649405106]
We develop an encoding that allows for logical properties to be preserved and is additionally reversible.
This means that the tree shape of a formula including all symbols can be reconstructed from the dense vector representation.
We propose datasets that can be used to train these syntactic and semantic properties.
arXiv Detail & Related papers (2021-01-22T15:04:54Z) - Smart Choices and the Selection Monad [0.0]
Describing systems in terms of choices and their resulting costs and rewards offers the promise of freeing algorithm designers and programmers from specifying how those choices should be made.
We define two small languages that support decision-making abstractions: one with choices and rewards, and the other additionally with probabilities.
arXiv Detail & Related papers (2020-07-17T12:13:16Z) - Lattice Representation Learning [6.427169570069738]
We introduce theory and algorithms for learning discrete representations that take on a lattice that is embedded in an Euclidean space.
Lattice representations possess an interesting combination of properties: a) they can be computed explicitly using lattice quantization, yet they can be learned efficiently using the ideas we introduce.
This article will focus on laying the groundwork for exploring and exploiting the first two properties, including a new mathematical result linking expressions used during training and inference time and experimental validation on two popular datasets.
arXiv Detail & Related papers (2020-06-24T16:05:11Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
We describe the algorithm for the mathematical equations discovery from the given observations data.
The algorithm combines genetic programming with the sparse regression.
It could be used for governing analytical equation discovery as well as for partial differential equations (PDE) discovery.
arXiv Detail & Related papers (2020-04-03T17:21:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.