Using the Polar Transform for Efficient Deep Learning-Based Aorta
Segmentation in CTA Images
- URL: http://arxiv.org/abs/2206.10294v1
- Date: Tue, 21 Jun 2022 12:18:02 GMT
- Title: Using the Polar Transform for Efficient Deep Learning-Based Aorta
Segmentation in CTA Images
- Authors: Marin Ben\v{c}evi\'c, Marija Habijan, Irena Gali\'c, Danilo Babin
- Abstract summary: Medical image segmentation often requires segmenting multiple elliptical objects on a single image.
In this paper, we present a general approach to improving the semantic segmentation performance of neural networks.
We show that our approach improves robustness and pixel-level recall while achieving segmentation in line with the state of the art.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation often requires segmenting multiple elliptical
objects on a single image. This includes, among other tasks, segmenting vessels
such as the aorta in axial CTA slices. In this paper, we present a general
approach to improving the semantic segmentation performance of neural networks
in these tasks and validate our approach on the task of aorta segmentation. We
use a cascade of two neural networks, where one performs a rough segmentation
based on the U-Net architecture and the other performs the final segmentation
on polar image transformations of the input. Connected component analysis of
the rough segmentation is used to construct the polar transformations, and
predictions on multiple transformations of the same image are fused using
hysteresis thresholding. We show that this method improves aorta segmentation
performance without requiring complex neural network architectures. In
addition, we show that our approach improves robustness and pixel-level recall
while achieving segmentation performance in line with the state of the art.
Related papers
- PI-Att: Topology Attention for Segmentation Networks through Adaptive Persistence Image Representation [1.4680035572775534]
We introduce a new topology-aware loss function, which explicitly forces the network to minimize the topological dissimilarity between the ground truth and prediction maps.
We quantify the topology of each map by the persistence image representation, for the first time in the context of a segmentation network loss.
The effectiveness of the proposed PI-Att loss is demonstrated on two different datasets for aorta and great vessel segmentation in computed tomography images.
arXiv Detail & Related papers (2024-08-15T09:06:49Z) - Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
Traditional deep learning-based automatic segmentation requires extensive training data with ground-truth labels.
We propose a novel method based on multi-atlas segmentation, that accurately segments multiple tissues without relying on labeled data for training.
Our method employs a cascaded deep learning network for 3D image registration, which computes small, incremental deformations to the moving image to align it precisely with the fixed image.
arXiv Detail & Related papers (2023-07-07T13:17:12Z) - Variational multichannel multiclass segmentation using unsupervised
lifting with CNNs [0.0]
We implement a flexible multiclass segmentation method that divides a given image into $K$ different regions.
We use convolutional neural networks (CNNs) targeting a pre-decomposition of the image.
Special emphasis is given to the extraction of informative feature maps serving as a starting point for the segmentation.
arXiv Detail & Related papers (2023-02-04T18:01:47Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Weakly-supervised fire segmentation by visualizing intermediate CNN
layers [82.75113406937194]
Fire localization in images and videos is an important step for an autonomous system to combat fire incidents.
We consider weakly supervised segmentation of fire in images, in which only image labels are used to train the network.
We show that in the case of fire segmentation, which is a binary segmentation problem, the mean value of features in a mid-layer of classification CNN can perform better than conventional Class Activation Mapping (CAM) method.
arXiv Detail & Related papers (2021-11-16T11:56:28Z) - Uncertainty-Based Dynamic Graph Neighborhoods For Medical Segmentation [0.0]
Post-processing and refining the results of segmentation is a common practice to decrease the misclassifications originating from the segmentation network.
A graph-based approach makes use of certain and uncertain points in a graph and refines the segmentation according to a small graph convolutional network (GCN)
We propose a new neighbor-selection mechanism according to feature distances and combine the two networks in the training procedure.
arXiv Detail & Related papers (2021-08-06T13:39:35Z) - Segmentation-Renormalized Deep Feature Modulation for Unpaired Image
Harmonization [0.43012765978447565]
Cycle-consistent Generative Adversarial Networks have been used to harmonize image sets between a source and target domain.
These methods are prone to instability, contrast inversion, intractable manipulation of pathology, and steganographic mappings which limit their reliable adoption in real-world medical imaging.
We propose a segmentation-renormalized image translation framework to reduce inter-scanner harmonization while preserving anatomical layout.
arXiv Detail & Related papers (2021-02-11T23:53:51Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Towards Interpretable Semantic Segmentation via Gradient-weighted Class
Activation Mapping [71.91734471596432]
We propose SEG-GRAD-CAM, a gradient-based method for interpreting semantic segmentation.
Our method is an extension of the widely-used Grad-CAM method, applied locally to produce heatmaps showing the relevance of individual pixels for semantic segmentation.
arXiv Detail & Related papers (2020-02-26T12:32:40Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.