PI-Att: Topology Attention for Segmentation Networks through Adaptive Persistence Image Representation
- URL: http://arxiv.org/abs/2408.08038v1
- Date: Thu, 15 Aug 2024 09:06:49 GMT
- Title: PI-Att: Topology Attention for Segmentation Networks through Adaptive Persistence Image Representation
- Authors: Mehmet Bahadir Erden, Sinan Unver, Ilke Ali Gurses, Rustu Turkay, Cigdem Gunduz-Demir,
- Abstract summary: We introduce a new topology-aware loss function, which explicitly forces the network to minimize the topological dissimilarity between the ground truth and prediction maps.
We quantify the topology of each map by the persistence image representation, for the first time in the context of a segmentation network loss.
The effectiveness of the proposed PI-Att loss is demonstrated on two different datasets for aorta and great vessel segmentation in computed tomography images.
- Score: 1.4680035572775534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segmenting multiple objects (e.g., organs) in medical images often requires an understanding of their topology, which simultaneously quantifies the shape of the objects and their positions relative to each other. This understanding is important for segmentation networks to generalize better with limited training data, which is common in medical image analysis. However, many popular networks were trained to optimize only pixel-wise performance, ignoring the topological correctness of the segmentation. In this paper, we introduce a new topology-aware loss function, which we call PI-Att, that explicitly forces the network to minimize the topological dissimilarity between the ground truth and prediction maps. We quantify the topology of each map by the persistence image representation, for the first time in the context of a segmentation network loss. Besides, we propose a new mechanism to adaptively calculate the persistence image at the end of each epoch based on the network's performance. This adaptive calculation enables the network to learn topology outline in the first epochs, and then topology details towards the end of training. The effectiveness of the proposed PI-Att loss is demonstrated on two different datasets for aorta and great vessel segmentation in computed tomography images.
Related papers
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - Topology-Aware Loss for Aorta and Great Vessel Segmentation in Computed
Tomography Images [1.4680035572775534]
This paper introduces a new topology-aware loss function that penalizes topology dissimilarities between the ground truth and prediction.
Our experiments on 4327 CT images of 24 subjects reveal that the proposed topology-aware loss function leads to better results than its counterparts.
arXiv Detail & Related papers (2023-07-06T17:06:49Z) - DTU-Net: Learning Topological Similarity for Curvilinear Structure
Segmentation [2.9398911304923447]
We present DTU-Net, a dual-decoder and topology-aware deep neural network consisting of two sequential light-weight U-Nets.
The texture net makes a coarse prediction using image texture information.
The topology net learns topological information from the coarse prediction by employing a triplet loss trained to recognize false and missed splits.
arXiv Detail & Related papers (2022-05-23T08:15:26Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Image Segmentation with Homotopy Warping [10.093435601073484]
topological correctness is crucial for the segmentation of images with fine-scale structures.
By leveraging the theory of digital topology, we identify locations in an image that are critical for topology.
We propose a new homotopy warping loss to train deep image segmentation networks for better topological accuracy.
arXiv Detail & Related papers (2021-12-15T00:33:15Z) - PSGR: Pixel-wise Sparse Graph Reasoning for COVID-19 Pneumonia
Segmentation in CT Images [83.26057031236965]
We propose a pixel-wise sparse graph reasoning (PSGR) module to enhance the modeling of long-range dependencies for COVID-19 infected region segmentation in CT images.
The PSGR module avoids imprecise pixel-to-node projections and preserves the inherent information of each pixel for global reasoning.
The solution has been evaluated against four widely-used segmentation models on three public datasets.
arXiv Detail & Related papers (2021-08-09T04:58:23Z) - Residual Moment Loss for Medical Image Segmentation [56.72261489147506]
Location information is proven to benefit the deep learning models on capturing the manifold structure of target objects.
Most existing methods encode the location information in an implicit way, for the network to learn.
We propose a novel loss function, namely residual moment (RM) loss, to explicitly embed the location information of segmentation targets.
arXiv Detail & Related papers (2021-06-27T09:31:49Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
We propose a pairwise relation-based semi-supervised (PRS2) model for gland segmentation on histology images.
This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net)
We evaluate our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset.
arXiv Detail & Related papers (2020-08-06T15:02:38Z) - An Elastic Interaction-Based Loss Function for Medical Image
Segmentation [10.851295591782538]
This paper introduces a long-range elastic interaction-based training strategy for medical image segmentation.
In this strategy, CNN learns the target region under the guidance of the elastic interaction energy between the boundary of the predicted region and that of the actual object.
Experimental results show that our method is able to achieve considerable improvements compared to commonly used pixel-wise loss functions.
arXiv Detail & Related papers (2020-07-06T11:49:14Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
Few-shot segmentation aims to learn a segmentation model that can be generalized to novel classes with only a few training images.
With a cross-reference mechanism, our network can better find the co-occurrent objects in the two images.
Experiments on the PASCAL VOC 2012 dataset show that our network achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-03-24T04:55:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.