論文の概要: Dynamic Reserve Price Design for Lazada Sponsored Search
- arxiv url: http://arxiv.org/abs/2206.10295v1
- Date: Tue, 21 Jun 2022 12:20:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-22 15:46:30.431607
- Title: Dynamic Reserve Price Design for Lazada Sponsored Search
- Title(参考訳): ラザダスポンサー検索のための動的リザーブ価格設計
- Authors: Mang Li
- Abstract要約: 我々は、トラフィックを販売するかどうかを判断し、収益とユーザエクスペリエンスの健全な関係を構築するために、予備価格設計を提案する。
また、生産環境における数十億のスケールデータによる予備価格を計算するために、分散アルゴリズムが提案されている。
オフライン評価とオンラインABテストによる実験は、工業生産に適するシンプルで効率的な方法であることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In ecommerce platform, users will be less likely to use organic search if
sponsored search shows them unexpected advertising items, which will be a
hidden cost for the platform. In order to incorporate the hidden cost into
auction mechanism which helps create positive growth for the platform, we turn
to a reserve price design to decide whether we sell the traffic, as well as
build healthy relationships between revenue and user experience. We propose a
dynamic reserve price design framework to sell traffic more efficiently with
minimal cost of user experience while keeping long term incentives to the
advertisers to reveal their valuations truthfully. A distributed algorithm is
also proposed to compute the reserve price with billion scale data in the
production environment. Experiments with offline evaluations and online AB
testing demonstrate that it is a simple and efficient method to be suitably
used in industrial production. It has already been fully deployed in the
production of Lazada sponsored search.
- Abstract(参考訳): eコマースプラットフォームでは、スポンサード検索が予期せぬ広告アイテムを表示する場合、ユーザーはオーガニック検索を使う可能性が低い。
プラットフォームを肯定的な成長に寄与するオークションメカニズムに隠れたコストを組み込むため、トラフィックを売却するか、収益とユーザエクスペリエンスの間に健全な関係を築くかを決定するために、リザーブ価格設計に目を向ける。
本稿では,広告主に長期のインセンティブを保ちながら,ユーザエクスペリエンスの最小限のコストでより効率的にトラフィックを販売するための動的リザーブ価格設計フレームワークを提案する。
生産環境における数十億規模のデータによる予備価格を計算するために,分散アルゴリズムも提案されている。
オフライン評価とオンラインABテストによる実験は、工業生産に適するシンプルで効率的な方法であることを示した。
既にラザダのスポンサーによる検索で完全に配備されている。
関連論文リスト
- Unveiling User Satisfaction and Creator Productivity Trade-Offs in Recommendation Platforms [68.51708490104687]
調査力の低い純粋に関連性の高い政策は、短期的ユーザの満足度を高めるが、コンテンツプールの長期的豊かさを損なうことを示す。
調査の結果,プラットフォーム上でのユーザの即時満足度と全体のコンテンツ生産との間には,根本的なトレードオフがあることが判明した。
論文 参考訳(メタデータ) (2024-10-31T07:19:22Z) - Online Ad Procurement in Non-stationary Autobidding Worlds [10.871587311621974]
本稿では,複数次元決定変数,帯域幅フィードバック,長期不確実な制約を用いたオンライン意思決定のための原始双対アルゴリズムを提案する。
提案アルゴリズムは, 逆数, 逆数, 周期的, エルゴディックな手順により, 調達結果が生成されると, 多くの世界では, 後悔の度合いが低いことを示す。
論文 参考訳(メタデータ) (2023-07-10T00:41:08Z) - ItemSage: Learning Product Embeddings for Shopping Recommendations at
Pinterest [60.841761065439414]
Pinterestでは、ItemSageと呼ばれるプロダクトの埋め込みセットを構築して、すべてのショッピングユースケースに適切なレコメンデーションを提供しています。
このアプローチによって、エンゲージメントとコンバージョンメトリクスが大幅に改善され、インフラストラクチャとメンテナンスコストの両方が削減された。
論文 参考訳(メタデータ) (2022-05-24T02:28:58Z) - Towards Revenue Maximization with Popular and Profitable Products [69.21810902381009]
企業マーケティングの共通のゴールは、様々な効果的なマーケティング戦略を活用することで、収益/利益を最大化することである。
商品の収益性に関する信頼性のある情報を見つけることは、ほとんどの製品が一定の時期にピークを迎える傾向があるため困難である。
本稿では、経済行動に基づく収益問題に対処し、ターゲットマーケティングのための0n-shelf Popular and most Profitable Products(OPPPs)を実行するための一般的な利益志向の枠組みを提案する。
論文 参考訳(メタデータ) (2022-02-26T02:07:25Z) - Bidding via Clustering Ads Intentions: an Efficient Search Engine
Marketing System for E-commerce [13.601308818833301]
本稿では,ウォルマート電子商取引における検索エンジンマーケティングのための入札システムのエンドツーエンド構造について紹介する。
ユーザからの問い合わせからの自然言語信号と製品からのコンテキスト知識を利用して、スパーシリティ問題を緩和する。
当社のアプローチのオンラインおよびオフラインのパフォーマンスを分析し、それを運用効率のよいソリューションとみなす方法について論じます。
論文 参考訳(メタデータ) (2021-06-24T00:12:07Z) - We Know What You Want: An Advertising Strategy Recommender System for
Online Advertising [26.261736843187045]
本稿では,ディスプレイ広告プラットフォーム上での動的入札戦略レコメンデーションのためのレコメンデーションシステムを提案する。
ニューラルネットワークをエージェントとして使用して,広告主のプロファイルや過去の採用行動に基づいて,広告主の要求を予測する。
オンライン評価は、広告主の広告パフォーマンスを最適化できることを示している。
論文 参考訳(メタデータ) (2021-05-25T17:06:59Z) - A novel auction system for selecting advertisements in Real-Time bidding [68.8204255655161]
リアルタイム入札(Real-Time Bidding)は、インターネット広告システムで、近年非常に人気を集めている。
本稿では、経済的な側面だけでなく、広告システムの機能にかかわる他の要因も考慮した、新たなアプローチによる代替ベッティングシステムを提案する。
論文 参考訳(メタデータ) (2020-10-22T18:36:41Z) - Dynamic Knapsack Optimization Towards Efficient Multi-Channel Sequential
Advertising [52.3825928886714]
我々は、動的knapsack問題として、シーケンシャルな広告戦略最適化を定式化する。
理論的に保証された二段階最適化フレームワークを提案し、元の最適化空間の解空間を大幅に削減する。
強化学習の探索効率を向上させるため,効果的な行動空間削減手法も考案した。
論文 参考訳(メタデータ) (2020-06-29T18:50:35Z) - Real-Time Optimization Of Web Publisher RTB Revenues [10.908037452134302]
本稿では,第2価格オークションによるWebパブリッシャーの収益を最適化するエンジンについて述べる。
エンジンは競売ごとに約1ミリ秒で最適な予備価格を予測できる。
論文 参考訳(メタデータ) (2020-06-12T11:14:56Z) - Do Interruptions Pay Off? Effects of Interruptive Ads on Consumers
Willingness to Pay [79.9312329825761]
本研究は,広告主ブランドの商品に対する消費者の支払い意欲に及ぼす割り込み広告の影響を計測する研究結果である。
本研究は, 広告の経済的影響に関する研究に寄与し, 実験マーケティング研究における実際の(自己申告の)支払意欲を測定する方法を紹介した。
論文 参考訳(メタデータ) (2020-05-14T09:26:57Z) - Online Causal Inference for Advertising in Real-Time Bidding Auctions [1.9336815376402723]
本稿では,リアルタイム入札システムを通じて購入した広告に対する因果推論を行うための新しい手法を提案する。
まず、広告の効果が最適な入札によって識別されることを示す。
マルチアームバンディット問題を解くために,適応型トンプソンサンプリング(TS)アルゴリズムを導入する。
論文 参考訳(メタデータ) (2019-08-22T21:13:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。