論文の概要: Machine Learning Prescriptive Canvas for Optimizing Business Outcomes
- arxiv url: http://arxiv.org/abs/2206.10333v1
- Date: Tue, 21 Jun 2022 12:53:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-22 15:17:11.358332
- Title: Machine Learning Prescriptive Canvas for Optimizing Business Outcomes
- Title(参考訳): ビジネス成果を最適化するための機械学習規範キャンバス
- Authors: Hanan Shteingart, Gerben Oostra, Ohad Levinkron, Naama Parush, Gil
Shabat, Daniel Aronovich
- Abstract要約: 規範的アプローチが重要である理由を説明し、ステップバイステップの方法論を提供する。
後者は、プロジェクトのステークホルダー間のフレーミングとコミュニケーションを改善することを目的としています。
- 参考スコア(独自算出の注目度): 0.32622301272834514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data science has the potential to improve business in a variety of verticals.
While the lion's share of data science projects uses a predictive approach, to
drive improvements these predictions should become decisions. However, such a
two-step approach is not only sub-optimal but might even degrade performance
and fail the project. The alternative is to follow a prescriptive framing,
where actions are "first citizens" so that the model produces a policy that
prescribes an action to take, rather than predicting an outcome. In this paper,
we explain why the prescriptive approach is important and provide a
step-by-step methodology: the Prescriptive Canvas. The latter aims to improve
framing and communication across the project stakeholders including project and
data science managers towards a successful business impact.
- Abstract(参考訳): データサイエンスは、様々な分野のビジネスを改善する可能性がある。
データサイエンスプロジェクトにおけるライオンのシェアは予測的アプローチを使用しているが、これらの予測を改善するには意思決定が必要である。
しかし、このような2段階のアプローチは副最適化であるだけでなく、パフォーマンスを低下させ、プロジェクトを失敗させる可能性もある。
別の方法として、アクションが"最初の市民"である規範的フレーミングに従うことで、モデルが結果を予測するのではなく、アクションを規定するポリシを生成する。
本稿では、規範的アプローチが重要である理由を説明し、ステップバイステップの方法論であるPrescriptive Canvasを提供する。
後者は、プロジェクトやデータサイエンスマネージャを含むプロジェクトステークホルダー間のフレーミングとコミュニケーションを改善し、ビジネスへの影響を成功させることを目的としています。
関連論文リスト
- Confidence-Aware Deep Learning for Load Plan Adjustments in the Parcel Service Industry [13.121155604809372]
本研究では,大規模輸送物流企業におけるインバウンド負荷計画調整を自動化するためのディープラーニングに基づくアプローチを開発する。
これは、不確実性が増大する中で、効率よくレジリエントなEコマース事業計画のための重要な課題に対処する。
論文 参考訳(メタデータ) (2024-11-26T15:13:13Z) - Achieving Fairness in Predictive Process Analytics via Adversarial Learning [50.31323204077591]
本稿では、デバイアスフェーズを予測ビジネスプロセス分析に組み込むことの課題に対処する。
本研究の枠組みは, 4つのケーススタディで検証し, 予測値に対する偏り変数の寄与を著しく低減することを示した。
論文 参考訳(メタデータ) (2024-10-03T15:56:03Z) - Metalearners for Ranking Treatment Effects [1.469168639465869]
政策の漸進的な利益曲線の下で、ランク付けの学習がいかにその領域を最大化できるかを示す。
政策の漸進的な利益曲線の下で、ランク付けの学習がいかにその領域を最大化できるかを示す。
論文 参考訳(メタデータ) (2024-05-03T15:31:18Z) - The Relative Value of Prediction in Algorithmic Decision Making [0.0]
アルゴリズムによる意思決定における予測の相対的な価値は何か?
我々は,拡張アクセスの相対値を決定する,単純でシャープな条件を同定する。
本稿では,これらの理論的洞察を用いて,アルゴリズムによる意思決定システムの設計を現実的に導く方法について述べる。
論文 参考訳(メタデータ) (2023-12-13T20:52:45Z) - Automatically Reconciling the Trade-off between Prediction Accuracy and
Earliness in Prescriptive Business Process Monitoring [0.802904964931021]
本稿では,予測精度と予測聴力のトレードオフを自動的に整合する問題に着目する。
予測精度と補聴器とのトレードオフを和らげるために、文献で異なるアプローチが提示された。
予測精度と補聴器のトレードオフを整合する主要な代替手法の比較評価を行う。
論文 参考訳(メタデータ) (2023-07-12T06:07:53Z) - Data-Driven Offline Decision-Making via Invariant Representation
Learning [97.49309949598505]
オフラインのデータ駆動意思決定は、アクティブなインタラクションなしで最適化された決定を合成する。
オフラインデータからトレーニングされたモデルへの入力に関して最適化する場合、誤って良いように見えるアウト・オブ・ディストリビューション(OOD)インプットを生成するのは簡単です。
本稿では、オフラインデータ駆動意思決定をドメイン適応として定式化し、最適化された決定値の正確な予測を行うことを目標とする。
論文 参考訳(メタデータ) (2022-11-21T11:01:37Z) - Self-Distillation for Further Pre-training of Transformers [83.84227016847096]
我々は、さらなる事前学習段階の正則化として自己蒸留を提案する。
画像およびテキスト分類タスクのための様々なベンチマークデータセットにおける自己蒸留の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2022-09-30T02:25:12Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
計算強化学習は、未来の感覚の予測を通じて、エージェントの世界の知覚を構築しようとする。
この一連の作業において、オープンな課題は、エージェントがどの予測が意思決定を最も支援できるかを、無限に多くの予測から決定することである。
本稿では,エージェントが何を予測するかを学習するメタ段階的な降下過程,(2)選択した予測の見積もり,3)将来の報酬を最大化するポリシーを生成する方法を紹介する。
論文 参考訳(メタデータ) (2022-06-13T21:31:06Z) - Just Label What You Need: Fine-Grained Active Selection for Perception
and Prediction through Partially Labeled Scenes [78.23907801786827]
提案手法は,コストに配慮した手法と,部分的にラベル付けされたシーンを通じて詳細なサンプル選択を可能にする一般化を導入している。
実世界の大規模自動運転データセットに関する我々の実験は、微粒な選択が知覚、予測、下流計画タスクのパフォーマンスを向上させることを示唆している。
論文 参考訳(メタデータ) (2021-04-08T17:57:41Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。