論文の概要: Hybridization of evolutionary algorithm and deep reinforcement learning
for multi-objective orienteering optimization
- arxiv url: http://arxiv.org/abs/2206.10464v1
- Date: Tue, 21 Jun 2022 15:20:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-26 12:39:06.901021
- Title: Hybridization of evolutionary algorithm and deep reinforcement learning
for multi-objective orienteering optimization
- Title(参考訳): 多目的オリエンテーリング最適化のための進化アルゴリズムと深層強化学習のハイブリッド化
- Authors: Wei Liu, Rui Wang, Tao Zhang, Kaiwen Li, Wenhua Li and Hisao Ishibuchi
- Abstract要約: 多目的オリエンテーリング問題(MO-OP)は、古典的な多目的ルーティング問題である。
本研究は,MO-OPを問題分解フレームワークを用いて解くことを目的とする。
- 参考スコア(独自算出の注目度): 16.23652137705642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-objective orienteering problems (MO-OPs) are classical multi-objective
routing problems and have received a lot of attention in the past decades. This
study seeks to solve MO-OPs through a problem-decomposition framework, that is,
a MO-OP is decomposed into a multi-objective knapsack problem (MOKP) and a
travelling salesman problem (TSP). The MOKP and TSP are then solved by a
multi-objective evolutionary algorithm (MOEA) and a deep reinforcement learning
(DRL) method, respectively. While the MOEA module is for selecting cities, the
DRL module is for planning a Hamiltonian path for these cities. An iterative
use of these two modules drives the population towards the Pareto front of
MO-OPs. The effectiveness of the proposed method is compared against NSGA-II
and NSGA-III on various types of MO-OP instances. Experimental results show
that our method exhibits the best performance on almost all the test instances,
and has shown strong generalization ability.
- Abstract(参考訳): 多目的オリエンテーリング問題(MO-OP)は古典的な多目的ルーティング問題であり、過去数十年で多くの注目を集めてきた。
本研究は,MO-OPを多目的knapsack問題(MOKP)と旅行セールスマン問題(TSP)に分解する問題分解フレームワークを用いて,MO-OPを解くことを目的とする。
MOKP と TSP はそれぞれ多目的進化アルゴリズム (MOEA) と深部強化学習 (DRL) によって解かれる。
MOEAモジュールは都市を選ぶためのものだが、DRLモジュールはこれらの都市のためのハミルトンの道を計画している。
これら2つのモジュールの反復的使用は、MO-OPのパレートフロントに人口を誘導する。
提案手法の有効性を,様々なMO-OPインスタンス上でNSGA-IIおよびNSGA-IIIと比較した。
実験結果から,本手法はほぼすべてのテストインスタンスにおいて最高の性能を示し,高い一般化能力を示した。
関連論文リスト
- Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging [111.8456671452411]
マルチタスク学習(MTL)は、共有モデルを利用して複数のタスクを遂行し、知識伝達を促進する。
マルチタスクモデル統合のためのウェイトエンセブリング・ミックス・オブ・エキスパート(WEMoE)手法を提案する。
WEMoEとE-WEMoEは, MTL性能, 一般化, 堅牢性の観点から, 最先端(SOTA)モデルマージ法より優れていることを示す。
論文 参考訳(メタデータ) (2024-10-29T07:16:31Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
このフレームワークはMonte Carlo Tree Search (MCTS)と反復的なSelf-Refineを組み合わせて推論パスを最適化する。
このフレームワークは、一般的なベンチマークと高度なベンチマークでテストされており、探索効率と問題解決能力の点で優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-03T18:12:29Z) - In Search for Architectures and Loss Functions in Multi-Objective Reinforcement Learning [0.6650227510403052]
多目的強化学習(MORL)は実世界のRL問題の複雑さに対処するために不可欠である。
MORLは、深層学習に基づく関数近似器による不安定な学習ダイナミクスのために困難である。
我々の研究は、モデルフリーのポリシー学習損失関数と異なるアーキテクチャ選択の影響を実証的に探求する。
論文 参考訳(メタデータ) (2024-07-23T19:17:47Z) - Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
本稿では、時間窓を用いた多目的車両ルーティング問題(MOVRPTW)に対処するために、ウェイト・アウェア・ディープ・強化学習(WADRL)手法を提案する。
WADRLの結果を最適化するために非支配的ソート遺伝的アルゴリズム-II (NSGA-II) 法を用いる。
論文 参考訳(メタデータ) (2024-07-18T02:46:06Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
大規模深層ニューラルネットワークに対する多目的最適化問題を解くことは、損失ランドスケープの複雑さと高価な計算コストのために難しい課題である。
本稿では,専門家(MoE)をベースとしたモデル融合を用いて,この問題を実用的でスケーラブルに解決する手法を提案する。
特殊な単一タスクモデルの重みをまとめることで、MoEモジュールは複数の目的間のトレードオフを効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-06-14T07:16:18Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Multi-objective Pointer Network for Combinatorial Optimization [10.286195356515355]
多目的最適化問題(MOCOP)は、様々な実応用に存在している。
最適化問題に対する近似最適解を生成するために, 深部強化学習法 (DRL) が提案されている。
本研究では,MOPN(Multi-objective Pointer Network)と呼ばれる単一モデル深層強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-25T14:02:34Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
多目的最適化(MOCO)の問題は、現実世界の多くのアプリケーションで見られる。
我々は,与えられたMOCO問題に対するパレート集合全体を,探索手順を伴わずに近似する学習ベースアプローチを開発した。
提案手法は,多目的走行セールスマン問題,マルチコンディショニング車両ルーティング問題,複数クナップサック問題において,ソリューションの品質,速度,モデル効率の面で,他の方法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-29T09:26:22Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
目的の選好から最適な政策を学習する単一政策 MORL の問題について検討する。
既存の方法は、多目的決定プロセスの正確な知識のような強い仮定を必要とする。
モデルベースエンベロップ値 (EVI) と呼ばれる新しいアルゴリズムを提案し, 包含された多目的$Q$学習アルゴリズムを一般化する。
論文 参考訳(メタデータ) (2020-11-19T22:35:31Z) - Decomposition in Decision and Objective Space for Multi-Modal
Multi-Objective Optimization [15.681236469530397]
多モード多目的最適化問題(MMMOP)はパレート最適集合内に複数の部分集合を持つ。
一般的な多目的進化的アルゴリズムは、複数の解部分集合を探索するために純粋に設計されていないが、MMMOP向けに設計されたアルゴリズムは、目的空間における劣化した性能を示す。
これは、MMMOPに対処するためのより良いアルゴリズムの設計を動機付けている。
論文 参考訳(メタデータ) (2020-06-04T03:18:47Z) - Hybrid Adaptive Evolutionary Algorithm for Multi-objective Optimization [0.0]
本稿では、MoHAEAと呼ばれるハイブリッド適応進化アルゴリズム(HAEA)の拡張として、新しい多目的アルゴリズムを提案する。
MoHAEAは、MOEA/D、pa$lambda$-MOEA/D、MOEA/D-AWA、NSGA-IIの4つの状態と比較される。
論文 参考訳(メタデータ) (2020-04-29T02:16:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。