論文の概要: Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II
- arxiv url: http://arxiv.org/abs/2407.13113v1
- Date: Thu, 18 Jul 2024 02:46:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 19:03:47.681907
- Title: Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II
- Title(参考訳): タイムウインドウを用いた多目的車両ルーティング最適化:ディープ強化学習とNSGA-IIを用いたハイブリッドアプローチ
- Authors: Rixin Wu, Ran Wang, Jie Hao, Qiang Wu, Ping Wang, Dusit Niyato,
- Abstract要約: 本稿では、時間窓を用いた多目的車両ルーティング問題(MOVRPTW)に対処するために、ウェイト・アウェア・ディープ・強化学習(WADRL)手法を提案する。
WADRLの結果を最適化するために非支配的ソート遺伝的アルゴリズム-II (NSGA-II) 法を用いる。
- 参考スコア(独自算出の注目度): 52.083337333478674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a weight-aware deep reinforcement learning (WADRL) approach designed to address the multiobjective vehicle routing problem with time windows (MOVRPTW), aiming to use a single deep reinforcement learning (DRL) model to solve the entire multiobjective optimization problem. The Non-dominated sorting genetic algorithm-II (NSGA-II) method is then employed to optimize the outcomes produced by the WADRL, thereby mitigating the limitations of both approaches. Firstly, we design an MOVRPTW model to balance the minimization of travel cost and the maximization of customer satisfaction. Subsequently, we present a novel DRL framework that incorporates a transformer-based policy network. This network is composed of an encoder module, a weight embedding module where the weights of the objective functions are incorporated, and a decoder module. NSGA-II is then utilized to optimize the solutions generated by WADRL. Finally, extensive experimental results demonstrate that our method outperforms the existing and traditional methods. Due to the numerous constraints in VRPTW, generating initial solutions of the NSGA-II algorithm can be time-consuming. However, using solutions generated by the WADRL as initial solutions for NSGA-II significantly reduces the time required for generating initial solutions. Meanwhile, the NSGA-II algorithm can enhance the quality of solutions generated by WADRL, resulting in solutions with better scalability. Notably, the weight-aware strategy significantly reduces the training time of DRL while achieving better results, enabling a single DRL model to solve the entire multiobjective optimization problem.
- Abstract(参考訳): 本稿では、時間ウィンドウ(MOVRPTW)を用いた多目的車両ルーティング問題に対する重み付き深度強化学習(WADRL)アプローチを提案する。
非支配的ソート遺伝的アルゴリズム-II (NSGA-II) 法はWADRLの結果を最適化し、両方のアプローチの限界を緩和する。
まず、旅行コストの最小化と顧客満足度の最大化を両立させるMOVRPTWモデルを設計する。
その後、トランスフォーマーベースのポリシーネットワークを組み込んだ新しいDRLフレームワークを提案する。
本ネットワークは、エンコーダモジュールと、対象関数の重みを組み込んだ重み埋め込みモジュールと、デコーダモジュールとから構成される。
NSGA-IIはWADRLによって生成される解を最適化するために使用される。
最後に,本手法が既存手法や従来手法よりも優れていることを示す。
VRPTWの制約が多すぎるため、NSGA-IIアルゴリズムの初期解を生成するには時間がかかる。
しかし、WADRLが生成した解をNSGA-IIの初期解として使用すると、初期解を生成するのに必要な時間が大幅に削減される。
一方、NSGA-IIアルゴリズムはWADRLによって生成されるソリューションの品質を向上させることができ、スケーラビリティが向上する。
特に、ウェイト・アウェア・ストラテジーは、DRLのトレーニング時間を大幅に短縮し、より優れた結果が得られ、単一のDRLモデルにより、多目的最適化の全体を解決することができる。
関連論文リスト
- DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Instance-Conditioned Adaptation for Large-scale Generalization of Neural Combinatorial Optimization [15.842155380912002]
本研究は,ニューラル最適化の大規模一般化のための新しいインスタンス・コンディション適応モデル(ICAM)を提案する。
特に,NCOモデルのための強力なインスタンス条件付きルーティング適応モジュールを設計する。
我々は,ラベル付き最適解を使わずに,モデルがクロススケールな特徴を学習することのできる,効率的な3段階強化学習ベーストレーニング手法を開発した。
論文 参考訳(メタデータ) (2024-05-03T08:00:19Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
機械学習(ML)モデルは、制約付き最適化ソルバをエミュレートするために訓練される。
本稿では,MLモデルを用いて2つの解推定を直接予測する手法を提案する。
これにより、双対目的が損失関数であるエンドツーエンドのトレーニングスキームと、双対上昇法をエミュレートした原始的実現可能性への解推定を可能にする。
論文 参考訳(メタデータ) (2024-03-06T04:43:22Z) - Toward Rapid, Optimal, and Feasible Power Dispatch through Generalized
Neural Mapping [0.0]
パワーディスパッチ問題を解決するための学習ベースアプローチとして LOOP-LC 2.0 を提案する。
LOOP-LC 2.0フレームワークの顕著な利点は、ソリューションのほぼ最適性と厳密な実現性を保証する能力である。
本稿では, LOOP-LC 2.0法の有効性を, 学習速度, 計算時間, 最適性, ソリューション実現可能性の観点から示す。
論文 参考訳(メタデータ) (2023-11-08T17:02:53Z) - Enhancing Column Generation by Reinforcement Learning-Based
Hyper-Heuristic for Vehicle Routing and Scheduling Problems [9.203492057735074]
カラム生成(CG)は変数を動的に生成することで大規模問題を解決する重要な手法である。
CGの性能を高めるために,RLHHと呼ばれる強化学習に基づく超ヒューリスティックフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-15T00:05:50Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
本稿では,Deep Reinforcement Learning(DRL)に基づくハイブリッド配置ソリューションと,Power of Two Choices原則に基づく専用最適化を提案する。
提案したHuristically-Assisted DRL (HA-DRL) は,他の最先端手法と比較して学習プロセスの高速化と資源利用の促進を可能にする。
論文 参考訳(メタデータ) (2021-05-14T10:04:17Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。