論文の概要: Can Foundation Models Talk Causality?
- arxiv url: http://arxiv.org/abs/2206.10591v1
- Date: Tue, 14 Jun 2022 22:54:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-26 07:13:16.048707
- Title: Can Foundation Models Talk Causality?
- Title(参考訳): ファンデーションモデルは因果関係を語れるか?
- Authors: Moritz Willig and Matej Ze\v{c}evi\'c and Devendra Singh Dhami and
Kristian Kersting
- Abstract要約: 財団のモデルは、コミュニティを2つのキャンプに分けて、熱い議論が続いている。
これらの大規模言語モデルによって因果表現がどの程度捉えられるかを調べることで、進行中の哲学的対立を解決するための謙虚な努力を行う。
- 参考スコア(独自算出の注目度): 17.103787431518683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundation models are subject to an ongoing heated debate, leaving open the
question of progress towards AGI and dividing the community into two camps: the
ones who see the arguably impressive results as evidence to the scaling
hypothesis, and the others who are worried about the lack of interpretability
and reasoning capabilities. By investigating to which extent causal
representations might be captured by these large scale language models, we make
a humble efforts towards resolving the ongoing philosophical conflicts.
- Abstract(参考訳): ファウンデーションモデルは、進行中の議論の対象であり、agiに向けた進歩の問題と、コミュニティを2つのキャンプに分割している。
これらの大規模言語モデルによって因果表現がどの程度捉えられるかを調べることで、進行中の哲学的対立を解決するための謙虚な努力を行う。
関連論文リスト
- It Couldn't Help But Overhear: On the Limits of Modelling Meta-Communicative Grounding Acts with Supervised Learning [19.812562421377706]
オーバーハーナーは、下手な行為を行う特権を剥奪され、意図した意味についてしか推測できない。
人間のメタコミュニケーション行為をデータ駆動学習モデルで適切にモデル化することは不可能であることを示す証拠が存在する。
最も重要なことは、このトピックをコミュニティのテーブルに持ち帰り、モデルが単に"参加"するようにデザインされた結果について、議論を奨励したいということです。
論文 参考訳(メタデータ) (2024-05-02T09:55:19Z) - Conceptual and Unbiased Reasoning in Language Models [98.90677711523645]
本稿では,抽象的質問に対する概念的推論をモデルに強制する,新しい概念化フレームワークを提案する。
既存の大規模言語モデルは概念的推論では不足しており、様々なベンチマークでは9%から28%に低下している。
ハイレベルな抽象的推論が不偏で一般化可能な意思決定の鍵となるので、モデルがどのように改善できるかについて議論する。
論文 参考訳(メタデータ) (2024-03-30T00:53:53Z) - Learning Interpretable Concepts: Unifying Causal Representation Learning
and Foundation Models [51.43538150982291]
人間の解釈可能な概念をデータから学習する方法を研究する。
両分野からアイデアをまとめ、多様なデータから概念を確実に回収できることを示す。
論文 参考訳(メタデータ) (2024-02-14T15:23:59Z) - The Essential Role of Causality in Foundation World Models for Embodied AI [102.75402420915965]
身体的なAIエージェントは、さまざまな現実世界環境で新しいタスクを実行する能力を必要とします。
現在の基礎モデルは物理的相互作用を正確にモデル化することができないため、Embodied AIには不十分である。
因果関係の研究は、検証世界モデルの構築に寄与する。
論文 参考訳(メタデータ) (2024-02-06T17:15:33Z) - When Large Language Models contradict humans? Large Language Models' Sycophantic Behaviour [0.8133739801185272]
主観的意見と文を含む問合せに対して,Large Language Models (LLMs) がサイコファン傾向を示すことを示す。
様々なスケールのLCMは、正しい回答を提供する自信を示すことによって、ユーザのヒントに従わないように思われる。
論文 参考訳(メタデータ) (2023-11-15T22:18:33Z) - Overthinking the Truth: Understanding how Language Models Process False
Demonstrations [32.29658741345911]
モデルの内部表現のレンズを通して有害な模倣を研究する。
我々は「過剰思考」と「偽誘導頭部」の2つの関連する現象を同定する。
論文 参考訳(メタデータ) (2023-07-18T17:56:50Z) - MindDial: Belief Dynamics Tracking with Theory-of-Mind Modeling for Situated Neural Dialogue Generation [62.44907105496227]
MindDialは、Mind-of-mindモデリングで位置決め自由形式の応答を生成できる、新しい対話型フレームワークである。
本研究では、話者の信念と話者の聴取者の信念を予測できる明示的なマインドモジュールを導入する。
筆者らのフレームワークは,提案手法と微調整モデルの両方に適用され,共通地盤アライメントとネゴシエーションの両方を含むシナリオで評価される。
論文 参考訳(メタデータ) (2023-06-27T07:24:32Z) - Causal Triplet: An Open Challenge for Intervention-centric Causal
Representation Learning [98.78136504619539]
Causal Tripletは、視覚的に複雑なシーンを特徴とする因果表現学習ベンチマークである。
この結果から,不整合表現やオブジェクト中心表現の知識によって構築されたモデルが,分散表現よりもはるかに優れていることを示す。
論文 参考訳(メタデータ) (2023-01-12T17:43:38Z) - Aligning Faithful Interpretations with their Social Attribution [58.13152510843004]
モデル解釈が忠実であることの要件はあいまいで不完全であることに気付く。
因果的帰属(因果的帰属)と解釈(社会的帰属)に対する人間の行動の帰属(因果的帰属)の相違が問題であると認識する。
論文 参考訳(メタデータ) (2020-06-01T16:45:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。