Demystifying the Base and Novel Performances for Few-shot
Class-incremental Learning
- URL: http://arxiv.org/abs/2206.10596v1
- Date: Sat, 18 Jun 2022 00:39:47 GMT
- Title: Demystifying the Base and Novel Performances for Few-shot
Class-incremental Learning
- Authors: Jaehoon Oh, Se-Young Yun
- Abstract summary: Few-shot class-incremental learning (FSCIL) has addressed challenging real-world scenarios where unseen novel classes continually arrive with few samples.
It is required to develop a model that recognizes the novel classes without forgetting prior knowledge.
It is shown that our straightforward method has comparable performance with the sophisticated state-of-the-art algorithms.
- Score: 15.762281194023462
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot class-incremental learning (FSCIL) has addressed challenging
real-world scenarios where unseen novel classes continually arrive with few
samples. In these scenarios, it is required to develop a model that recognizes
the novel classes without forgetting prior knowledge. In other words, FSCIL
aims to maintain the base performance and improve the novel performance
simultaneously. However, there is little study to investigate the two
performances separately. In this paper, we first decompose the entire model
into four types of parameters and demonstrate that the tendency of the two
performances varies greatly with the updated parameters when the novel classes
appear. Based on the analysis, we propose a simple method for FSCIL, coined as
NoNPC, which uses normalized prototype classifiers without further training for
incremental novel classes. It is shown that our straightforward method has
comparable performance with the sophisticated state-of-the-art algorithms.
Related papers
- Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
Few-shot class-incremental learning (FSCIL) confronts the challenge of integrating new classes into a model with minimal training samples.
Traditional methods widely adopt static adaptation relying on a fixed parameter space to learn from data that arrive sequentially.
We propose a dual selective SSM projector that dynamically adjusts the projection parameters based on the intermediate features for dynamic adaptation.
arXiv Detail & Related papers (2024-07-08T17:09:39Z) - Bias Mitigating Few-Shot Class-Incremental Learning [17.185744533050116]
Few-shot class-incremental learning aims at recognizing novel classes continually with limited novel class samples.
Recent methods somewhat alleviate the accuracy imbalance between base and incremental classes by fine-tuning the feature extractor in the incremental sessions.
We propose a novel method to mitigate model bias of the FSCIL problem during training and inference processes.
arXiv Detail & Related papers (2024-02-01T10:37:41Z) - Few-Shot Class-Incremental Learning via Training-Free Prototype
Calibration [67.69532794049445]
We find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes.
We propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes.
arXiv Detail & Related papers (2023-12-08T18:24:08Z) - Constructing Sample-to-Class Graph for Few-Shot Class-Incremental
Learning [10.111587226277647]
Few-shot class-incremental learning (FSCIL) aims to build machine learning model that can continually learn new concepts from a few data samples.
In this paper, we propose a Sample-to-Class (S2C) graph learning method for FSCIL.
arXiv Detail & Related papers (2023-10-31T08:38:14Z) - Fast Hierarchical Learning for Few-Shot Object Detection [57.024072600597464]
Transfer learning approaches have recently achieved promising results on the few-shot detection task.
These approaches suffer from catastrophic forgetting'' issue due to finetuning of base detector.
We tackle the aforementioned issues in this work.
arXiv Detail & Related papers (2022-10-10T20:31:19Z) - Class-incremental Novel Class Discovery [76.35226130521758]
We study the new task of class-incremental Novel Class Discovery (class-iNCD)
We propose a novel approach for class-iNCD which prevents forgetting of past information about the base classes.
Our experiments, conducted on three common benchmarks, demonstrate that our method significantly outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2022-07-18T13:49:27Z) - Class-Incremental Learning with Strong Pre-trained Models [97.84755144148535]
Class-incremental learning (CIL) has been widely studied under the setting of starting from a small number of classes (base classes)
We explore an understudied real-world setting of CIL that starts with a strong model pre-trained on a large number of base classes.
Our proposed method is robust and generalizes to all analyzed CIL settings.
arXiv Detail & Related papers (2022-04-07T17:58:07Z) - Incremental Few-Shot Learning via Implanting and Compressing [13.122771115838523]
Incremental Few-Shot Learning requires a model to continually learn novel classes from only a few examples.
We propose a two-step learning strategy referred to as textbfImplanting and textbfCompressing.
Specifically, in the textbfImplanting step, we propose to mimic the data distribution of novel classes with the assistance of data-abundant base set.
In the textbf step, we adapt the feature extractor to precisely represent each novel class for enhancing intra-class compactness.
arXiv Detail & Related papers (2022-03-19T11:04:43Z) - Bridging Non Co-occurrence with Unlabeled In-the-wild Data for
Incremental Object Detection [56.22467011292147]
Several incremental learning methods are proposed to mitigate catastrophic forgetting for object detection.
Despite the effectiveness, these methods require co-occurrence of the unlabeled base classes in the training data of the novel classes.
We propose the use of unlabeled in-the-wild data to bridge the non-occurrence caused by the missing base classes during the training of additional novel classes.
arXiv Detail & Related papers (2021-10-28T10:57:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.