Efficient and effective training of language and graph neural network
models
- URL: http://arxiv.org/abs/2206.10781v1
- Date: Wed, 22 Jun 2022 00:23:37 GMT
- Title: Efficient and effective training of language and graph neural network
models
- Authors: Vassilis N. Ioannidis, Xiang Song, Da Zheng, Houyu Zhang, Jun Ma, Yi
Xu, Belinda Zeng, Trishul Chilimbi, George Karypis
- Abstract summary: We put forth an efficient and effective framework termed language model GNN (LM-GNN) to jointly train large-scale language models and graph neural networks.
The effectiveness in our framework is achieved by applying stage-wise fine-tuning of the BERT model first with heterogenous graph information and then with a GNN model.
We evaluate the LM-GNN framework in different datasets performance and showcase the effectiveness of the proposed approach.
- Score: 36.00479096375565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Can we combine heterogenous graph structure with text to learn high-quality
semantic and behavioural representations? Graph neural networks (GNN)s encode
numerical node attributes and graph structure to achieve impressive performance
in a variety of supervised learning tasks. Current GNN approaches are
challenged by textual features, which typically need to be encoded to a
numerical vector before provided to the GNN that may incur some information
loss. In this paper, we put forth an efficient and effective framework termed
language model GNN (LM-GNN) to jointly train large-scale language models and
graph neural networks. The effectiveness in our framework is achieved by
applying stage-wise fine-tuning of the BERT model first with heterogenous graph
information and then with a GNN model. Several system and design optimizations
are proposed to enable scalable and efficient training. LM-GNN accommodates
node and edge classification as well as link prediction tasks. We evaluate the
LM-GNN framework in different datasets performance and showcase the
effectiveness of the proposed approach. LM-GNN provides competitive results in
an Amazon query-purchase-product application.
Related papers
- LOGIN: A Large Language Model Consulted Graph Neural Network Training Framework [30.54068909225463]
We aim to streamline the GNN design process and leverage the advantages of Large Language Models (LLMs) to improve the performance of GNNs on downstream tasks.
We formulate a new paradigm, coined "LLMs-as-Consultants," which integrates LLMs with GNNs in an interactive manner.
We empirically evaluate the effectiveness of LOGIN on node classification tasks across both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2024-05-22T18:17:20Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
We study a new problem, GNN model evaluation, that aims to assess the performance of a specific GNN model trained on labeled and observed graphs.
We propose a two-stage GNN model evaluation framework, including (1) DiscGraph set construction and (2) GNNEvaluator training and inference.
Under the effective training supervision from the DiscGraph set, GNNEvaluator learns to precisely estimate node classification accuracy of the to-be-evaluated GNN model.
arXiv Detail & Related papers (2023-10-23T05:51:59Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Robust Graph Neural Networks using Weighted Graph Laplacian [1.8292714902548342]
Graph neural network (GNN) is vulnerable to noise and adversarial attacks in input data.
We propose a generic framework for robustifying GNN known as Weighted Laplacian GNN (RWL-GNN)
arXiv Detail & Related papers (2022-08-03T05:36:35Z) - Towards Understanding Graph Neural Networks: An Algorithm Unrolling
Perspective [9.426760895586428]
We introduce a class of unrolled networks built on truncated optimization algorithms for graph signal denoising problems.
The training process of a GNN model can be seen as solving a bilevel optimization problem with a GSD problem at the lower level.
An expressive model named UGDGNN, i.e., unrolled gradient descent GNN, is proposed which inherits appealing theoretical properties.
arXiv Detail & Related papers (2022-06-09T12:54:03Z) - GPN: A Joint Structural Learning Framework for Graph Neural Networks [36.38529113603987]
We propose a GNN-based joint learning framework that simultaneously learns the graph structure and the downstream task.
Our method is the first GNN-based bilevel optimization framework for resolving this task.
arXiv Detail & Related papers (2022-05-12T09:06:04Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
Graph neural networks (GNNs) have received much attention recently because of their excellent performance on graph-based tasks.
We propose self-enhanced GNN (SEG), which improves the quality of the input data using the outputs of existing GNN models.
SEG consistently improves the performance of well-known GNN models such as GCN, GAT and SGC across different datasets.
arXiv Detail & Related papers (2020-02-18T12:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.