Federated Latent Class Regression for Hierarchical Data
- URL: http://arxiv.org/abs/2206.10783v1
- Date: Wed, 22 Jun 2022 00:33:04 GMT
- Title: Federated Latent Class Regression for Hierarchical Data
- Authors: Bin Yang, Thomas Carette, Masanobu Jimbo, Shinya Maruyama
- Abstract summary: Federated Learning (FL) allows a number of agents to participate in training a global machine learning model without disclosing locally stored data.
We propose a novel probabilistic model, Hierarchical Latent Class Regression (HLCR), and its extension to Federated Learning, FEDHLCR.
Our inference algorithm, being derived from Bayesian theory, provides strong convergence guarantees and good robustness to overfitting. Experimental results show that FEDHLCR offers fast convergence even in non-IID datasets.
- Score: 5.110894308882439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) allows a number of agents to participate in training
a global machine learning model without disclosing locally stored data.
Compared to traditional distributed learning, the heterogeneity (non-IID) of
the agents slows down the convergence in FL. Furthermore, many datasets, being
too noisy or too small, are easily overfitted by complex models, such as deep
neural networks. Here, we consider the problem of using FL regression on noisy,
hierarchical and tabular datasets in which user distributions are significantly
different. Inspired by Latent Class Regression (LCR), we propose a novel
probabilistic model, Hierarchical Latent Class Regression (HLCR), and its
extension to Federated Learning, FEDHLCR. FEDHLCR consists of a mixture of
linear regression models, allowing better accuracy than simple linear
regression, while at the same time maintaining its analytical properties and
avoiding overfitting. Our inference algorithm, being derived from Bayesian
theory, provides strong convergence guarantees and good robustness to
overfitting. Experimental results show that FEDHLCR offers fast convergence
even in non-IID datasets.
Related papers
- Generalized Regression with Conditional GANs [2.4171019220503402]
We propose to learn a prediction function whose outputs, when paired with the corresponding inputs, are indistinguishable from feature-label pairs in the training dataset.
We show that this approach to regression makes fewer assumptions on the distribution of the data we are fitting to and, therefore, has better representation capabilities.
arXiv Detail & Related papers (2024-04-21T01:27:47Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
We propose a method for adapting the weights of the last layer of a pre-trained neural regression model to perform better on input data originating from a different distribution.
We demonstrate how this lightweight spectral adaptation procedure can improve out-of-distribution performance for synthetic and real-world datasets.
arXiv Detail & Related papers (2023-12-29T04:15:58Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Learning an Invertible Output Mapping Can Mitigate Simplicity Bias in
Neural Networks [66.76034024335833]
We investigate why diverse/ complex features are learned by the backbone, and their brittleness is due to the linear classification head relying primarily on the simplest features.
We propose Feature Reconstruction Regularizer (FRR) to ensure that the learned features can be reconstructed back from the logits.
We demonstrate up to 15% gains in OOD accuracy on the recently introduced semi-synthetic datasets with extreme distribution shifts.
arXiv Detail & Related papers (2022-10-04T04:01:15Z) - Overparameterized ReLU Neural Networks Learn the Simplest Models: Neural
Isometry and Exact Recovery [33.74925020397343]
Deep learning has shown that neural networks generalize remarkably well even with an extreme number of learned parameters.
We consider the training and generalization properties of two-layer ReLU networks with standard weight decay regularization.
We show that ReLU networks learn simple and sparse models even when the labels are noisy.
arXiv Detail & Related papers (2022-09-30T06:47:15Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Neural Tangent Kernel Empowered Federated Learning [35.423391869982694]
Federated learning (FL) is a privacy-preserving paradigm where multiple participants jointly solve a machine learning problem without sharing raw data.
We propose a novel FL paradigm empowered by the neural tangent kernel (NTK) framework.
We show that the proposed paradigm can achieve the same accuracy while reducing the number of communication rounds by an order of magnitude.
arXiv Detail & Related papers (2021-10-07T17:58:58Z) - Provable Model-based Nonlinear Bandit and Reinforcement Learning: Shelve
Optimism, Embrace Virtual Curvature [61.22680308681648]
We show that global convergence is statistically intractable even for one-layer neural net bandit with a deterministic reward.
For both nonlinear bandit and RL, the paper presents a model-based algorithm, Virtual Ascent with Online Model Learner (ViOL)
arXiv Detail & Related papers (2021-02-08T12:41:56Z) - Sparsely constrained neural networks for model discovery of PDEs [0.0]
We present a modular framework that determines the sparsity pattern of a deep-learning based surrogate using any sparse regression technique.
We show how a different network architecture and sparsity estimator improve model discovery accuracy and convergence on several benchmark examples.
arXiv Detail & Related papers (2020-11-09T11:02:40Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
We propose a novel framework to understand contrastive self-supervised learning (SSL) methods that employ dual pairs of deep ReLU networks.
We prove that in each SGD update of SimCLR with various loss functions, the weights at each layer are updated by a emphcovariance operator.
To further study what role the covariance operator plays and which features are learned in such a process, we model data generation and augmentation processes through a emphhierarchical latent tree model (HLTM)
arXiv Detail & Related papers (2020-10-01T17:51:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.