論文の概要: MultiEarth 2022 Deforestation Challenge -- ForestGump
- arxiv url: http://arxiv.org/abs/2206.10831v1
- Date: Wed, 22 Jun 2022 04:10:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-24 04:13:14.347563
- Title: MultiEarth 2022 Deforestation Challenge -- ForestGump
- Title(参考訳): マルチアース2022 森林破壊チャレンジ -- 森林管理
- Authors: Dongoo Lee, Yeonju Choi
- Abstract要約: 従来のUNetと包括的データ処理を用いた森林破壊推定手法を提案する。
Sentinel-1、Sentinel-2、Landsat 8の様々なチャネルが慎重に選択され、ディープニューラルネットワークのトレーニングに使用される。
提案手法では,新しいクエリの森林破壊状況を高精度に推定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The estimation of deforestation in the Amazon Forest is challenge task
because of the vast size of the area and the difficulty of direct human access.
However, it is a crucial problem in that deforestation results in serious
environmental problems such as global climate change, reduced biodiversity,
etc. In order to effectively solve the problems, satellite imagery would be a
good alternative to estimate the deforestation of the Amazon. With a
combination of optical images and Synthetic aperture radar (SAR) images,
observation of such a massive area regardless of weather conditions become
possible. In this paper, we present an accurate deforestation estimation method
with conventional UNet and comprehensive data processing. The diverse channels
of Sentinel-1, Sentinel-2 and Landsat 8 are carefully selected and utilized to
train deep neural networks. With the proposed method, deforestation status for
novel queries are successfully estimated with high accuracy.
- Abstract(参考訳): アマゾン・フォレストにおける森林破壊の推定は、広大な面積と直接アクセスの困難さから難しい課題である。
しかし、森林破壊が地球温暖化や生物多様性の低減といった深刻な環境問題を引き起こすことは重要な問題である。
この問題を効果的に解決するために、衛星画像はアマゾンの森林破壊を推定する良い代替手段となるだろう。
光画像と合成開口レーダ(SAR)画像を組み合わせることで、気象条件に関わらず、このような巨大な領域の観測が可能となる。
本稿では,従来型unetと包括的データ処理を用いた森林破壊推定手法を提案する。
Sentinel-1、Sentinel-2、Landsat 8の様々なチャネルが慎重に選択され、ディープニューラルネットワークのトレーニングに使用される。
提案手法により,新規クエリの森林破壊状況を高精度に推定することに成功した。
関連論文リスト
- Deep Learning tools to support deforestation monitoring in the Ivory Coast using SAR and Optical satellite imagery [0.0]
衛星は森林の消失を認識し、関心領域の拡大を防ぐために使用できる。
フォレスト・ノン・フォレスト・マップ (FNF) はセンチネル画像入力モデルの基礎的真理として用いられている。
森林と非森林を分類するモデルは、森林破壊の起こりうる場所を予測するためにオープンデータセットを使用して、この地域の森林と非森林のピクセルを分類する。
論文 参考訳(メタデータ) (2024-09-16T14:26:41Z) - Rapid Deforestation and Burned Area Detection using Deep Multimodal
Learning on Satellite Imagery [3.8073142980733]
アマゾンの森林における森林破壊の推定と火災検出は、広大な面積のために大きな課題となっている。
マルチモーダル衛星画像とリモートセンシングは、アマゾン地域の森林破壊を推定し、山火事を検出するための有望なソリューションを提供する。
本研究では、畳み込みニューラルネットワーク(CNN)と包括的データ処理技術を用いて、これらの問題を解決するための新しいキュレートデータセットとディープラーニングベースのアプローチを提案する。
論文 参考訳(メタデータ) (2023-07-10T21:49:30Z) - MultiEarth 2023 Deforestation Challenge -- Team FOREVER [0.2020917258669917]
直接アクセスすることなく広範囲を解析できるため,衛星画像の森林破壊を正確に推定することが重要である。
本稿では、最新の深層ニューラルネットワークモデルを用いて、アマゾン熱帯雨林地域の森林破壊状況を予測するための多視点学習戦略を提案する。
論文 参考訳(メタデータ) (2023-06-20T09:10:06Z) - ForestEyes Project: Conception, Enhancements, and Challenges [68.8204255655161]
この研究はフォレストEyesという市民科学プロジェクトを紹介している。
リモートセンシング画像の解析と分類を通じてボランティアの回答を用いて、熱帯雨林の森林破壊地域をモニタリングする。
これらの回答の品質を評価するために、ブラジルの法律Amazonのリモートセンシング画像を使用して、さまざまなキャンペーン/ワークフローがローンチされた。
論文 参考訳(メタデータ) (2022-08-24T17:48:12Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
森林破壊や荒廃により、毎年何百万ヘクタールもの熱帯林が失われる。
監視・森林破壊検知プログラムは、犯罪者の予防・処罰のための公共政策に加えて、使用されている。
本稿では,熱帯林の森林破壊検出作業におけるニューロ進化技術(NEAT)に基づくパターン分類器の利用を提案する。
論文 参考訳(メタデータ) (2022-08-23T16:04:12Z) - Detecting Deforestation from Sentinel-1 Data in the Absence of Reliable
Reference Data [3.222802562733787]
信頼性のある基準データがない場合に森林破壊検出のための新しい手法を提案し,評価する。
この方法は、研究領域で96.5%の変化検出感度(生産者の精度)を実現する。
その結果, センチネル-1のデータは, 地球規模の森林破壊モニタリングのタイムラインを前進させる可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-24T15:08:02Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
本研究では,10mの解像度で森林構造変数を高密度に推定するベイズ深層学習手法を提案する。
本手法は,Sentinel-2光画像とSentinel-1合成開口レーダ画像を5種類の森林構造変数のマップに変換する。
ノルウェーを横断する41の空中レーザー走査ミッションの基準データに基づいて、我々のモデルを訓練し、テストする。
論文 参考訳(メタデータ) (2021-11-25T16:21:28Z) - Tackling the Overestimation of Forest Carbon with Deep Learning and
Aerial Imagery [13.97765383479824]
本論文は,航空画像,衛星画像,地中構造観測から森林炭素推定を初めて体系的に比較したものである。
航空画像の収集は著しく高価であり,高分解能が森林炭素推定をどの程度改善するかは定かでない。
以上の結果から,衛星画像による森林炭素推定は,熱帯再植林計画において10回以上も過大評価可能であることが示唆された。
論文 参考訳(メタデータ) (2021-07-23T15:59:52Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
ワイルドファイアはアメリカ合衆国西海岸で頻繁に起こる最大の災害の1つである。
カリフォルニアの山火事リスクが高い地域を解析・評価するための静的・動的予測モデルを提案します。
論文 参考訳(メタデータ) (2021-03-14T17:56:17Z) - Counting Cows: Tracking Illegal Cattle Ranching From High-Resolution
Satellite Imagery [59.32805936205217]
牛の農業は世界の温室効果ガス排出量の8.8%を占めている。
40cmの解像度でアマゾンの衛星画像を取得し、合計28498頭の牛を含む903枚の画像のデータセットをまとめた。
本実験は,有望な結果を示し,これらの課題を解決するためのアルゴリズムとデータ収集プロセスのいずれにおいても,次のステップの重要方向を示すものである。
論文 参考訳(メタデータ) (2020-11-14T19:07:39Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
我々は,現在および将来の沿岸洪水の衛星画像を生成する深層学習パイプラインを構築した。
物理に基づく洪水図と比較して画像を評価することにより,提案手法は物理的一貫性とフォトリアリズムの両方において,ベースラインモデルよりも優れていることがわかった。
この研究は沿岸の洪水の可視化に焦点が当てられているが、気候変動が地球をどう形作るかのグローバルな可視化を作成することを想定している。
論文 参考訳(メタデータ) (2020-10-16T02:15:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。