論文の概要: MultiEarth 2023 Deforestation Challenge -- Team FOREVER
- arxiv url: http://arxiv.org/abs/2306.11762v1
- Date: Tue, 20 Jun 2023 09:10:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 16:24:07.625569
- Title: MultiEarth 2023 Deforestation Challenge -- Team FOREVER
- Title(参考訳): マルチアース2023森林破壊チャレンジ -- チーム・フォーエバー
- Authors: Seunghan Park, Dongoo Lee, Yeonju Choi, SungTae Moon
- Abstract要約: 直接アクセスすることなく広範囲を解析できるため,衛星画像の森林破壊を正確に推定することが重要である。
本稿では、最新の深層ニューラルネットワークモデルを用いて、アマゾン熱帯雨林地域の森林破壊状況を予測するための多視点学習戦略を提案する。
- 参考スコア(独自算出の注目度): 0.2020917258669917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is important problem to accurately estimate deforestation of satellite
imagery since this approach can analyse extensive area without direct human
access. However, it is not simple problem because of difficulty in observing
the clear ground surface due to extensive cloud cover during long rainy season.
In this paper, we present a multi-view learning strategy to predict
deforestation status in the Amazon rainforest area with latest deep neural
network models. Multi-modal dataset consists of three types of different
satellites imagery, Sentinel-1, Sentinel-2 and Landsat 8 is utilized to train
and predict deforestation status. MMsegmentation framework is selected to apply
comprehensive data augmentation and diverse networks. The proposed method
effectively and accurately predicts the deforestation status of new queries.
- Abstract(参考訳): 直接アクセスすることなく広範囲を解析できるため,衛星画像の森林破壊を正確に推定することが重要である。
しかし, 雨季の広い雲に覆われたため, 地表面の透視が困難であったため, 簡単な問題ではない。
本稿では,最新の深層ニューラルネットワークモデルを用いて,アマゾン熱帯雨林地域の森林破壊状況を予測するマルチビュー学習戦略を提案する。
マルチモーダルデータセットは、Sentinel-1、Sentinel-2、Landsat 8の3種類の異なる衛星画像で構成されている。
mmsegmentation frameworkは、包括的なデータ拡張と多様なネットワークを適用するために選択される。
提案手法は,新規クエリの森林破壊状態を効果的かつ正確に予測する。
関連論文リスト
- FoMo-Bench: a multi-modal, multi-scale and multi-task Forest Monitoring Benchmark for remote sensing foundation models [24.141443217910986]
第1回森林モニタリングベンチマーク(FoMo-Bench)について紹介する。
FoMo-Benchは、衛星、航空、在庫データを含む15の多様なデータセットで構成されている。
FoMo-Benchで表されるタスクや地理の多様性をさらに高めるため、我々は新しいグローバルデータセットであるTalloSを紹介した。
論文 参考訳(メタデータ) (2023-12-15T09:49:21Z) - Combining recurrent and residual learning for deforestation monitoring
using multitemporal SAR images [4.296985074708585]
アマゾン熱帯雨林は地球最大の森林であり、地球規模の気候規制において非常に重要である。
この領域におけるリモートセンシングデータからの森林破壊検出は重要な課題である。
本稿では森林モニタリングに適した3つのディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2023-10-09T13:16:20Z) - ForensicsForest Family: A Series of Multi-scale Hierarchical Cascade Forests for Detecting GAN-generated Faces [53.739014757621376]
我々は,GAN生成顔を検出するために,EmforensicsForest Familyと呼ばれる簡易かつ効果的な森林法について述べる。
ForenscisForestは、新しく提案された多層階層のカスケード林である。
Hybrid ForensicsForestはCNNレイヤをモデルに統合する。
Divide-and-Conquer ForensicsForestは、トレーニングサンプリングの一部のみを使用して、森林モデルを構築することができる。
論文 参考訳(メタデータ) (2023-08-02T06:41:19Z) - Rapid Deforestation and Burned Area Detection using Deep Multimodal
Learning on Satellite Imagery [3.8073142980733]
アマゾンの森林における森林破壊の推定と火災検出は、広大な面積のために大きな課題となっている。
マルチモーダル衛星画像とリモートセンシングは、アマゾン地域の森林破壊を推定し、山火事を検出するための有望なソリューションを提供する。
本研究では、畳み込みニューラルネットワーク(CNN)と包括的データ処理技術を用いて、これらの問題を解決するための新しいキュレートデータセットとディープラーニングベースのアプローチを提案する。
論文 参考訳(メタデータ) (2023-07-10T21:49:30Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
分類(離散化)と連続損失関数を最適化した新しい視覚変換器(ViT)モデルを提案する。
このモデルは、従来使用されていた畳み込みベースのアプローチ(ConvNet)よりも、連続損失関数のみで最適化された精度が向上する。
論文 参考訳(メタデータ) (2023-04-22T22:39:03Z) - Multi-modal learning for geospatial vegetation forecasting [1.8180482634934092]
我々は,高分解能植生予測に特化して設計された最初のデータセットであるGreenEarthNetを紹介する。
また、Sentinel 2衛星画像から植生の緑度を予測するための新しい深層学習手法であるContextformerを提案する。
我々の知る限り、この研究は、季節的サイクルを超えた異常を捉えることができる微細な解像度で大陸規模の植生モデリングのための最初のモデルを示す。
論文 参考訳(メタデータ) (2023-03-28T17:59:05Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
森林破壊や荒廃により、毎年何百万ヘクタールもの熱帯林が失われる。
監視・森林破壊検知プログラムは、犯罪者の予防・処罰のための公共政策に加えて、使用されている。
本稿では,熱帯林の森林破壊検出作業におけるニューロ進化技術(NEAT)に基づくパターン分類器の利用を提案する。
論文 参考訳(メタデータ) (2022-08-23T16:04:12Z) - MultiEarth 2022 Deforestation Challenge -- ForestGump [0.0]
従来のUNetと包括的データ処理を用いた森林破壊推定手法を提案する。
Sentinel-1、Sentinel-2、Landsat 8の様々なチャネルが慎重に選択され、ディープニューラルネットワークのトレーニングに使用される。
提案手法では,新しいクエリの森林破壊状況を高精度に推定する。
論文 参考訳(メタデータ) (2022-06-22T04:10:07Z) - Multiple-environment Self-adaptive Network for Aerial-view
Geo-localization [85.52750931345287]
航空ビューのジオローカライゼーションは、ドローンビュー画像とジオタグの衛星ビュー画像とをマッチングすることにより、未知の位置を決定する傾向がある。
本研究では,環境変化に伴う領域シフトを調整するために,マルチ環境自己適応ネットワーク(MuSe-Net)を提案する。
特に、MuSe-Netは、1つの多重環境スタイル抽出ネットワークと1つの自己適応的特徴抽出ネットワークを含む2分岐ニューラルネットワークを使用している。
論文 参考訳(メタデータ) (2022-04-18T16:04:29Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
本研究では,10mの解像度で森林構造変数を高密度に推定するベイズ深層学習手法を提案する。
本手法は,Sentinel-2光画像とSentinel-1合成開口レーダ画像を5種類の森林構造変数のマップに変換する。
ノルウェーを横断する41の空中レーザー走査ミッションの基準データに基づいて、我々のモデルを訓練し、テストする。
論文 参考訳(メタデータ) (2021-11-25T16:21:28Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。