Learning Debiased Classifier with Biased Committee
- URL: http://arxiv.org/abs/2206.10843v5
- Date: Mon, 1 May 2023 09:53:12 GMT
- Title: Learning Debiased Classifier with Biased Committee
- Authors: Nayeong Kim, Sehyun Hwang, Sungsoo Ahn, Jaesik Park, Suha Kwak
- Abstract summary: Neural networks are prone to be biased towards spurious correlations between classes and latent attributes exhibited in a major portion of training data.
We propose a new method for training debiased classifiers with no spurious attribute label.
On five real-world datasets, our method outperforms prior arts using no spurious attribute label like ours and even surpasses those relying on bias labels occasionally.
- Score: 30.417623580157834
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural networks are prone to be biased towards spurious correlations between
classes and latent attributes exhibited in a major portion of training data,
which ruins their generalization capability. We propose a new method for
training debiased classifiers with no spurious attribute label. The key idea is
to employ a committee of classifiers as an auxiliary module that identifies
bias-conflicting data, i.e., data without spurious correlation, and assigns
large weights to them when training the main classifier. The committee is
learned as a bootstrapped ensemble so that a majority of its classifiers are
biased as well as being diverse, and intentionally fail to predict classes of
bias-conflicting data accordingly. The consensus within the committee on
prediction difficulty thus provides a reliable cue for identifying and
weighting bias-conflicting data. Moreover, the committee is also trained with
knowledge transferred from the main classifier so that it gradually becomes
debiased along with the main classifier and emphasizes more difficult data as
training progresses. On five real-world datasets, our method outperforms prior
arts using no spurious attribute label like ours and even surpasses those
relying on bias labels occasionally.
Related papers
- Model Debiasing by Learnable Data Augmentation [19.625915578646758]
This paper proposes a novel 2-stage learning pipeline featuring a data augmentation strategy able to regularize the training.
Experiments on synthetic and realistic biased datasets show state-of-the-art classification accuracy, outperforming competing methods.
arXiv Detail & Related papers (2024-08-09T09:19:59Z) - Language-guided Detection and Mitigation of Unknown Dataset Bias [23.299264313976213]
We propose a framework to identify potential biases as keywords without prior knowledge based on the partial occurrence in the captions.
Our framework not only outperforms existing methods without prior knowledge, but also is even comparable with a method that assumes prior knowledge.
arXiv Detail & Related papers (2024-06-05T03:11:33Z) - Signal Is Harder To Learn Than Bias: Debiasing with Focal Loss [10.031357641396616]
neural networks are notorious for learning unwanted associations, also known as biases, instead of the underlying decision rule.
We propose Signal is Harder, a variational-autoencoder-based method that simultaneously trains a biased and unbiased classifier.
We propose a perturbation scheme in the latent space for visualizing the bias that helps practitioners become aware of the sources of spurious correlations.
arXiv Detail & Related papers (2023-05-31T09:09:59Z) - Self-supervised debiasing using low rank regularization [59.84695042540525]
Spurious correlations can cause strong biases in deep neural networks, impairing generalization ability.
We propose a self-supervised debiasing framework potentially compatible with unlabeled samples.
Remarkably, the proposed debiasing framework significantly improves the generalization performance of self-supervised learning baselines.
arXiv Detail & Related papers (2022-10-11T08:26:19Z) - Pseudo Bias-Balanced Learning for Debiased Chest X-ray Classification [57.53567756716656]
We study the problem of developing debiased chest X-ray diagnosis models without knowing exactly the bias labels.
We propose a novel algorithm, pseudo bias-balanced learning, which first captures and predicts per-sample bias labels.
Our proposed method achieved consistent improvements over other state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-18T11:02:18Z) - Relieving Long-tailed Instance Segmentation via Pairwise Class Balance [85.53585498649252]
Long-tailed instance segmentation is a challenging task due to the extreme imbalance of training samples among classes.
It causes severe biases of the head classes (with majority samples) against the tailed ones.
We propose a novel Pairwise Class Balance (PCB) method, built upon a confusion matrix which is updated during training to accumulate the ongoing prediction preferences.
arXiv Detail & Related papers (2022-01-08T07:48:36Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
Bias in natural language processing arises from models learning characteristics of the author such as gender and race.
Existing methods for mitigating and measuring bias do not directly account for correlations between author demographics and linguistic variables.
This paper introduces a very simple but highly effective method for countering bias using instance reweighting.
arXiv Detail & Related papers (2021-09-16T23:40:28Z) - BiaSwap: Removing dataset bias with bias-tailored swapping augmentation [20.149645246997668]
Deep neural networks often make decisions based on the spurious correlations inherent in the dataset, failing to generalize in an unbiased data distribution.
This paper proposes a novel bias-tailored augmentation-based approach, BiaSwap, for learning debiased representation without requiring supervision on the bias type.
arXiv Detail & Related papers (2021-08-23T08:35:26Z) - Towards Learning an Unbiased Classifier from Biased Data via Conditional
Adversarial Debiasing [17.113618920885187]
We present a novel adversarial debiasing method, which addresses a feature that is spuriously connected to the labels of training images.
We argue by a mathematical proof that our approach is superior to existing techniques for the abovementioned bias.
Our experiments show that our approach performs better than state-of-the-art techniques on a well-known benchmark dataset with real-world images of cats and dogs.
arXiv Detail & Related papers (2021-03-10T16:50:42Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
We show that neural networks learn to rely on spurious correlation only when it is "easier" to learn than the desired knowledge.
We propose a failure-based debiasing scheme by training a pair of neural networks simultaneously.
Our method significantly improves the training of the network against various types of biases in both synthetic and real-world datasets.
arXiv Detail & Related papers (2020-07-06T07:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.