論文の概要: Parallel Structure from Motion for UAV Images via Weighted Connected
Dominating Set
- arxiv url: http://arxiv.org/abs/2206.11499v1
- Date: Thu, 23 Jun 2022 06:53:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-24 22:44:56.859472
- Title: Parallel Structure from Motion for UAV Images via Weighted Connected
Dominating Set
- Title(参考訳): 重み付き連結ドミネートセットによるUAV画像の運動からの並列構造
- Authors: San Jiang, Qingquan Li, Wanshou Jiang, Wu Chen
- Abstract要約: 本稿では,クラスタマージのための大域的モデルを抽出し,効率よく正確なUAV画像配向を実現するために並列SfMソリューションを設計するアルゴリズムを提案する。
実験の結果,提案した並列SfMは17.4倍の効率向上と相対配向精度が得られることがわかった。
- 参考スコア(独自算出の注目度): 5.17395782758526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incremental Structure from Motion (ISfM) has been widely used for UAV image
orientation. Its efficiency, however, decreases dramatically due to the
sequential constraint. Although the divide-and-conquer strategy has been
utilized for efficiency improvement, cluster merging becomes difficult or
depends on seriously designed overlap structures. This paper proposes an
algorithm to extract the global model for cluster merging and designs a
parallel SfM solution to achieve efficient and accurate UAV image orientation.
First, based on vocabulary tree retrieval, match pairs are selected to
construct an undirected weighted match graph, whose edge weights are calculated
by considering both the number and distribution of feature matches. Second, an
algorithm, termed weighted connected dominating set (WCDS), is designed to
achieve the simplification of the match graph and build the global model, which
incorporates the edge weight in the graph node selection and enables the
successful reconstruction of the global model. Third, the match graph is
simultaneously divided into compact and non-overlapped clusters. After the
parallel reconstruction, cluster merging is conducted with the aid of common 3D
points between the global and cluster models. Finally, by using three UAV
datasets that are captured by classical oblique and recent optimized views
photogrammetry, the validation of the proposed solution is verified through
comprehensive analysis and comparison. The experimental results demonstrate
that the proposed parallel SfM can achieve 17.4 times efficiency improvement
and comparative orientation accuracy. In absolute BA, the geo-referencing
accuracy is approximately 2.0 and 3.0 times the GSD (Ground Sampling Distance)
value in the horizontal and vertical directions, respectively. For parallel
SfM, the proposed solution is a more reliable alternative.
- Abstract(参考訳): 運動からのインクリメンタル構造 (ISfM) は、UAV画像の向き付けに広く用いられている。
しかし、その効率は連続的な制約のために劇的に低下する。
分割・分割戦略は効率改善に利用されてきたが、クラスタマージは困難か、あるいは真剣に設計されたオーバーラップ構造に依存している。
本稿では,クラスタマージのための大域的モデルを抽出し,効率よく正確なUAV画像配向を実現するために並列SfMソリューションを設計するアルゴリズムを提案する。
まず、語彙木検索に基づいてマッチペアを選択し、特徴マッチングの数と分布の両方を考慮してエッジ重みを計算した非指向重み付きマッチグラフを構築する。
第2に、マッチグラフの簡略化と、グラフノード選択におけるエッジ重みを組み込んだグローバルモデルの構築を実現するために、重み付き連結支配集合(wcds)と呼ばれるアルゴリズムが設計されている。
第3に、マッチグラフは同時にコンパクトクラスタと非オーバーラップクラスタに分割される。
並列再構築後、グローバルモデルとクラスタモデルの間の共通の3dポイントの助けを借りてクラスタマージを行う。
最後に,古典斜めの3つのUAVデータセットと近年最適化されたビュー・フォトグラム法を用いて,包括的解析と比較により提案手法の有効性を検証する。
実験の結果,提案する並列sfmは17.4倍の効率向上と配向精度を両立できることがわかった。
絶対baでは、地理参照精度は水平方向と垂直方向のgsd値の約2.0倍と3.0倍である。
並列SfMの場合、提案手法はより信頼性の高い代替手段である。
関連論文リスト
- Fast and Scalable Semi-Supervised Learning for Multi-View Subspace Clustering [13.638434337947302]
FSSMSCは、既存のアプローチで一般的に見られる高い計算複雑性に対する新しいソリューションである。
この手法は、各データポイントを選択されたランドマークの疎線型結合として表現し、すべてのビューにまたがるコンセンサスアンカーグラフを生成する。
FSSMSCの有効性と効率は、様々なスケールの複数のベンチマークデータセットに対する広範な実験を通して検証される。
論文 参考訳(メタデータ) (2024-08-11T06:54:00Z) - Multiway Point Cloud Mosaicking with Diffusion and Global Optimization [74.3802812773891]
マルチウェイポイントクラウドモザイクのための新しいフレームワーク(水曜日)を紹介する。
我々のアプローチの核心は、重複を識別し、注意点を洗練する学習されたペアワイズ登録アルゴリズムODINである。
4つの多種多様な大規模データセットを用いて、我々の手法は、全てのベンチマークにおいて大きなマージンで、最先端のペアとローテーションの登録結果を比較した。
論文 参考訳(メタデータ) (2024-03-30T17:29:13Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
グラフマッチングはコンピュータビジョンやパターン認識において一般的に用いられる技法である。
最近のデータ駆動型アプローチは、グラフマッチングの精度を著しく改善した。
データ駆動手法と従来の手法の利点を組み合わせたグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T06:34:05Z) - Efficient Match Pair Retrieval for Large-scale UAV Images via Graph
Indexed Global Descriptor [9.402103660431791]
本稿では,効率的なマッチングペア検索手法を提案し,並列SfM再構成のための統合ワークフローを実装した。
提案手法は3つの大規模データセットを用いて検証されている。
論文 参考訳(メタデータ) (2023-07-10T12:41:55Z) - Contour Context: Abstract Structural Distribution for 3D LiDAR Loop
Detection and Metric Pose Estimation [31.968749056155467]
本稿では,高精度な3DoF距離ポーズ推定を用いた簡易かつ効果的かつ効率的なトポロジカルループ閉包検出パイプラインを提案する。
我々は,3次元LiDAR点から投影されるBEV像を構造層分布として解釈する。
検索キーは、層状KD木でインデックスされたデータベースの検索を高速化するように設計されている。
論文 参考訳(メタデータ) (2023-02-13T07:18:24Z) - Why Approximate Matrix Square Root Outperforms Accurate SVD in Global
Covariance Pooling? [59.820507600960745]
本稿では,前方通過のSVDと後方伝播のPad'e近似を用いて勾配を計算する新しいGCPメタ層を提案する。
提案するメタレイヤは,さまざまなCNNモデルに統合され,大規模および微細なデータセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-05-06T08:03:45Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
本稿では、HSIデータクラスタリングのための空間スペクトルクラスタリングとアンカーグラフ(SSCAG)という新しい非監視アプローチを提案する。
提案されたSSCAGは最先端のアプローチと競合する。
論文 参考訳(メタデータ) (2021-04-24T08:09:27Z) - Joint Multi-Dimension Pruning via Numerical Gradient Update [120.59697866489668]
本稿では,空間,深さ,チャネルの3つの重要な側面において,ネットワークを同時に切断する方法であるジョイント・マルチディメンジョン・プルーニング(ジョイント・プルーニング)を提案する。
本手法は,1つのエンドツーエンドトレーニングにおいて3次元にわたって協調的に最適化され,従来よりも効率がよいことを示す。
論文 参考訳(メタデータ) (2020-05-18T17:57:09Z) - Augmented Parallel-Pyramid Net for Attention Guided Pose-Estimation [90.28365183660438]
本稿では、注意部分モジュールと微分可能な自動データ拡張を備えた拡張並列ピラミドネットを提案する。
我々は、データ拡張のシーケンスをトレーニング可能なCNNコンポーネントとして定式化する新しいポーズ検索空間を定義する。
特に,本手法は,挑戦的なCOCOキーポイントベンチマークとMPIIデータセットの最先端結果において,トップ1の精度を実現する。
論文 参考訳(メタデータ) (2020-03-17T03:52:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。