SWBT: Similarity Weighted Behavior Transformer with the Imperfect
Demonstration for Robotic Manipulation
- URL: http://arxiv.org/abs/2401.08957v1
- Date: Wed, 17 Jan 2024 04:15:56 GMT
- Title: SWBT: Similarity Weighted Behavior Transformer with the Imperfect
Demonstration for Robotic Manipulation
- Authors: Kun Wu, Ning Liu, Zhen Zhao, Di Qiu, Jinming Li, Zhengping Che,
Zhiyuan Xu, Qinru Qiu, Jian Tang
- Abstract summary: We propose a novel framework named Similarity Weighted Behavior Transformer (SWBT)
SWBT effectively learn from both expert and imperfect demonstrations without interaction with environments.
We are the first to attempt to integrate imperfect demonstrations into the offline imitation learning setting for robot manipulation tasks.
- Score: 32.78083518963342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imitation learning (IL), aiming to learn optimal control policies from expert
demonstrations, has been an effective method for robot manipulation tasks.
However, previous IL methods either only use expensive expert demonstrations
and omit imperfect demonstrations or rely on interacting with the environment
and learning from online experiences. In the context of robotic manipulation,
we aim to conquer the above two challenges and propose a novel framework named
Similarity Weighted Behavior Transformer (SWBT). SWBT effectively learn from
both expert and imperfect demonstrations without interaction with environments.
We reveal that the easy-to-get imperfect demonstrations, such as forward and
inverse dynamics, significantly enhance the network by learning fruitful
information. To the best of our knowledge, we are the first to attempt to
integrate imperfect demonstrations into the offline imitation learning setting
for robot manipulation tasks. Extensive experiments on the ManiSkill2 benchmark
built on the high-fidelity Sapien simulator and real-world robotic manipulation
tasks demonstrated that the proposed method can extract better features and
improve the success rates for all tasks. Our code will be released upon
acceptance of the paper.
Related papers
- VITAL: Visual Teleoperation to Enhance Robot Learning through Human-in-the-Loop Corrections [10.49712834719005]
We propose a low-cost visual teleoperation system for bimanual manipulation tasks, called VITAL.
Our approach leverages affordable hardware and visual processing techniques to collect demonstrations.
We enhance the generalizability and robustness of the learned policies by utilizing both real and simulated environments.
arXiv Detail & Related papers (2024-07-30T23:29:47Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
Imitation learning is a powerful machine learning algorithm for a robot to acquire manipulation skills.
We propose GSR, a simple yet effective algorithm that learns from suboptimal demonstrations through Graph Search and Retrieval.
GSR can achieve a 10% to 30% higher success rate and over 30% higher proficiency compared to baselines.
arXiv Detail & Related papers (2024-07-22T06:12:21Z) - Learning Variable Compliance Control From a Few Demonstrations for Bimanual Robot with Haptic Feedback Teleoperation System [5.497832119577795]
dexterous, contact-rich manipulation tasks using rigid robots is a significant challenge in robotics.
Compliance control schemes have been introduced to mitigate these issues by controlling forces via external sensors.
Learning from Demonstrations offers an intuitive alternative, allowing robots to learn manipulations through observed actions.
arXiv Detail & Related papers (2024-06-21T09:03:37Z) - BeTAIL: Behavior Transformer Adversarial Imitation Learning from Human Racing Gameplay [48.75878234995544]
Imitation learning learns a policy from demonstrations without requiring hand-designed reward functions.
We propose BeTAIL: Behavior Transformer Adversarial Imitation Learning.
We test BeTAIL on three challenges with expert-level demonstrations of real human gameplay in Gran Turismo Sport.
arXiv Detail & Related papers (2024-02-22T00:38:43Z) - Skill Disentanglement for Imitation Learning from Suboptimal
Demonstrations [60.241144377865716]
We consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set.
We propose method by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills.
arXiv Detail & Related papers (2023-06-13T17:24:37Z) - A Survey of Demonstration Learning [0.0]
Demonstration Learning is a paradigm in which an agent learns to perform a task by imitating the behavior of an expert shown in demonstrations.
It is gaining significant traction due to having tremendous potential for learning complex behaviors from demonstrations.
Due to learning without interacting with the environment, demonstration learning would allow the automation of a wide range of real world applications such as robotics and healthcare.
arXiv Detail & Related papers (2023-03-20T15:22:10Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
We describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks.
Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples.
experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world.
arXiv Detail & Related papers (2022-12-19T22:50:40Z) - Bottom-Up Skill Discovery from Unsegmented Demonstrations for
Long-Horizon Robot Manipulation [55.31301153979621]
We tackle real-world long-horizon robot manipulation tasks through skill discovery.
We present a bottom-up approach to learning a library of reusable skills from unsegmented demonstrations.
Our method has shown superior performance over state-of-the-art imitation learning methods in multi-stage manipulation tasks.
arXiv Detail & Related papers (2021-09-28T16:18:54Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.