論文の概要: NovelCraft: A Dataset for Novelty Detection and Discovery in Open Worlds
- arxiv url: http://arxiv.org/abs/2206.11736v1
- Date: Thu, 23 Jun 2022 14:31:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-24 13:07:10.273380
- Title: NovelCraft: A Dataset for Novelty Detection and Discovery in Open Worlds
- Title(参考訳): NovelCraft: オープンワールドにおけるノベルティ検出と発見のためのデータセット
- Authors: Patrick Feeney (1), Sarah Schneider (1 and 2), Panagiotis
Lymperopoulos (1), Liping Liu (1), Matthias Scheutz (1), Michael C. Hughes
(1) ((1) Dept. of Computer Science, Tufts University, (2) Center for Vision,
Automation and Control, Austrian Institute of Technology)
- Abstract要約: 我々は、包括的評価に焦点をあてて、最先端のノベルティ検出と一般化されたカテゴリ発見モデルをベンチマークする。
さまざまなタイプのミスのタスク固有のコストを認識するモデルは、オープンな世界での新規性をより効果的に検出し、適応することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In order for artificial agents to perform useful tasks in changing
environments, they must be able to both detect and adapt to novelty. However,
visual novelty detection research often only evaluates on repurposed datasets
such as CIFAR-10 originally intended for object classification. This practice
restricts novelties to well-framed images of distinct object types. We suggest
that new benchmarks are needed to represent the challenges of navigating an
open world. Our new NovelCraft dataset contains multi-modal episodic data of
the images and symbolic world-states seen by an agent completing a pogo-stick
assembly task within a video game world. In some episodes, we insert novel
objects that can impact gameplay. Novelty can vary in size, position, and
occlusion within complex scenes. We benchmark state-of-the-art novelty
detection and generalized category discovery models with a focus on
comprehensive evaluation. Results suggest an opportunity for future research:
models aware of task-specific costs of different types of mistakes could more
effectively detect and adapt to novelty in open worlds.
- Abstract(参考訳): 人工エージェントが環境の変化において有用なタスクを行うためには、新規性の検出と適応が可能である必要がある。
しかし、視覚的ノベルティ検出の研究は、CIFAR-10のような元来オブジェクト分類を意図した再使用データセットでのみ評価されることが多い。
この慣行は、新奇性は異なるオブジェクトタイプの精巧な画像に制限される。
オープンワールドをナビゲートする上で,新たなベンチマークが必要であることを示唆する。
新しいノベルクラフトデータセットは、コンピュータゲームの世界においてポゴスティックアセンブリタスクを完了させるエージェントが見る画像と象徴的な世界状態のマルチモーダルエピソディックデータを含む。
いくつかのエピソードでは、ゲームプレイに影響を与える可能性のある新しいオブジェクトを挿入する。
新規性は、複雑なシーン内でサイズ、位置、および咬合によって異なる。
包括的評価に着目し,最先端のノベルティ検出と一般化したカテゴリ発見モデルの性能評価を行った。
さまざまなタイプのミスのタスク固有のコストを認識するモデルは、オープンな世界での新規性をより効果的に検出し、適応することができる。
関連論文リスト
- Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation [58.37525311718006]
OVAD(Open-vocabulary Aero Object Detection)という,航空物体検出問題の新しい定式化を行った。
本稿では,CLIP-activated students-Teacher DetectionフレームワークであるCastDetを提案する。
本フレームワークは,ロバストなローカライズ教師といくつかのボックス選択戦略を統合し,新しいオブジェクトの高品質な提案を生成する。
論文 参考訳(メタデータ) (2024-11-04T12:59:13Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Zero-shot Degree of Ill-posedness Estimation for Active Small Object Change Detection [8.977792536037956]
日常的な屋内ナビゲーションでは、ロボットは区別できない小さな変化物体を検出する必要がある。
既存の技術は、変更検出モデルを正規化するために、高品質なクラス固有オブジェクトに依存している。
本研究では,受動とアクティブビジョンの両方を改善するために,DoIの概念を検討する。
論文 参考訳(メタデータ) (2024-05-10T01:56:39Z) - Find n' Propagate: Open-Vocabulary 3D Object Detection in Urban Environments [67.83787474506073]
我々は,現在のLiDARに基づく3Dオブジェクト検出システムの限界に対処する。
本稿では,3次元OVタスクに対する汎用textscFind n' Propagate アプローチを提案する。
我々は、新しいオブジェクトクラスに対する平均精度(AP)を最大3.97倍に向上させる。
論文 参考訳(メタデータ) (2024-03-20T12:51:30Z) - OpenPatch: a 3D patchwork for Out-Of-Distribution detection [16.262921993755892]
そこで本研究では,実世界のクラウドサンプルに対して,参照既知のデータが合成された場合のセマンティックノベルティ検出の課題について述べる。
OpenPatchは、トレーニング済みの大きなモデルの上に構築され、その中間機能から、既知の各クラスを記述するパッチ表現のセットを単純に抽出する。
OpenPatchは、全例と数例の既知のサンプルシナリオの両方で優れていることを実証します。
論文 参考訳(メタデータ) (2023-10-05T08:49:51Z) - Look Around and Learn: Self-Training Object Detection by Exploration [23.620820805804616]
エージェントは、事前訓練されたオフザシェルフ検出器を使用して環境を探索し、オブジェクトを検出し、擬似ラベルを関連付ける。
同じオブジェクトの擬似ラベルが、異なる視点で一貫性を持っていなければならないと仮定することで、ハードサンプルをマイニングするためにLook Aroundという探索ポリシーを学びます。
我々は現在の最先端の統一されたベンチマークを実装し、既存の探索政策や知覚メカニズムと比較する。
論文 参考訳(メタデータ) (2023-02-07T16:26:45Z) - Spatial Reasoning for Few-Shot Object Detection [21.3564383157159]
本稿では,空間的推論フレームワークを提案する。
グラフ畳み込みネットワークをRoIとその関連性はそれぞれノードとエッジとして定義する。
提案手法は最先端の手法を著しく上回り, 広範囲なアブレーション研究により有効性を検証する。
論文 参考訳(メタデータ) (2022-11-02T12:38:08Z) - OW-DETR: Open-world Detection Transformer [90.56239673123804]
オープンワールドオブジェクト検出のための新しいエンドツーエンドトランスフォーマーベースのフレームワークOW-DETRを提案する。
OW-DETRは3つの専用コンポーネント、すなわち注目駆動の擬似ラベル、新規性分類、オブジェクトネススコアから構成される。
我々のモデルは、最近導入されたOWODアプローチであるOREよりも優れており、リコールの度合いは1.8%から3.3%である。
論文 参考訳(メタデータ) (2021-12-02T18:58:30Z) - The Pursuit of Knowledge: Discovering and Localizing Novel Categories
using Dual Memory [85.01439251151203]
我々は,未ラベルの大規模データセットにおける新しいオブジェクトの発見と位置決定の課題であるオブジェクトカテゴリ発見に取り組む。
2つのメモリモジュールを用いて,オブジェクトカテゴリに関する事前知識を用いて新たなカテゴリを探索する手法を提案する。
検出器の性能をCOCOのミニバルデータセットで示し、そのインザワイルド機能を実証します。
論文 参考訳(メタデータ) (2021-05-04T17:55:59Z) - Any-Shot Object Detection [81.88153407655334]
「アニーショット検出」とは、全く見えず、数発のカテゴリが推論中に同時に共起できる場所である。
我々は、ゼロショットと少数ショットの両方のオブジェクトクラスを同時に検出できる、統合された任意のショット検出モデルを提案する。
我々のフレームワークは、ゼロショット検出とFewショット検出タスクにのみ使用できる。
論文 参考訳(メタデータ) (2020-03-16T03:43:15Z) - SVIRO: Synthetic Vehicle Interior Rear Seat Occupancy Dataset and
Benchmark [11.101588888002045]
SVIROは10台の異なる車両の旅客室におけるシーンの合成データセットである。
限られたバリエーションに基づいて学習した際の一般化能力と信頼性について、機械学習に基づくアプローチを解析する。
論文 参考訳(メタデータ) (2020-01-10T14:44:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。