論文の概要: The Pursuit of Knowledge: Discovering and Localizing Novel Categories
using Dual Memory
- arxiv url: http://arxiv.org/abs/2105.01652v2
- Date: Wed, 5 May 2021 01:23:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-06 13:03:07.209864
- Title: The Pursuit of Knowledge: Discovering and Localizing Novel Categories
using Dual Memory
- Title(参考訳): 知識の探索:デュアルメモリを用いた新しいカテゴリの発見と位置決定
- Authors: Sai Saketh Rambhatla and Rama Chellappa and Abhinav Shrivastava
- Abstract要約: 我々は,未ラベルの大規模データセットにおける新しいオブジェクトの発見と位置決定の課題であるオブジェクトカテゴリ発見に取り組む。
2つのメモリモジュールを用いて,オブジェクトカテゴリに関する事前知識を用いて新たなカテゴリを探索する手法を提案する。
検出器の性能をCOCOのミニバルデータセットで示し、そのインザワイルド機能を実証します。
- 参考スコア(独自算出の注目度): 85.01439251151203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We tackle object category discovery, which is the problem of discovering and
localizing novel objects in a large unlabeled dataset. While existing methods
show results on datasets with less cluttered scenes and fewer object instances
per image, we present our results on the challenging COCO dataset. Moreover, we
argue that, rather than discovering new categories from scratch, discovery
algorithms can benefit from identifying what is already known and focusing
their attention on the unknown. We propose a method to use prior knowledge
about certain object categories to discover new categories by leveraging two
memory modules, namely Working and Semantic memory. We show the performance of
our detector on the COCO minival dataset to demonstrate its in-the-wild
capabilities.
- Abstract(参考訳): 我々は,未ラベルの大規模データセットにおける新しいオブジェクトの発見と位置決定の課題であるオブジェクトカテゴリ発見に取り組む。
既存の方法では、散らばったシーンが少なく、画像ごとのオブジェクトインスタンスが少ないデータセットで結果を示すが、我々は、挑戦的なCOCOデータセットで結果を示す。
さらに、ゼロから新しいカテゴリを発見するのではなく、発見アルゴリズムは、既に知られているものを特定し、未知に注意を向けることの恩恵を受けることができると論じる。
本稿では,作業記憶と意味記憶という2つのメモリモジュールを用いて,オブジェクトカテゴリに関する事前知識を用いて新たなカテゴリを探索する手法を提案する。
我々は,COCOミニバルデータセット上での検出器の性能を示す。
関連論文リスト
- Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation [58.37525311718006]
OVAD(Open-vocabulary Aero Object Detection)という,航空物体検出問題の新しい定式化を行った。
本稿では,CLIP-activated students-Teacher DetectionフレームワークであるCastDetを提案する。
本フレームワークは,ロバストなローカライズ教師といくつかのボックス選択戦略を統合し,新しいオブジェクトの高品質な提案を生成する。
論文 参考訳(メタデータ) (2024-11-04T12:59:13Z) - Towards Novel Class Discovery: A Study in Novel Skin Lesions Clustering [22.24175320515204]
皮膚内視鏡画像データセットから新しい意味クラスを自動的に発見する新しいクラス発見フレームワークを提案する。
具体的には、まずコントラスト学習を用いて、既知のカテゴリと未知のカテゴリのすべてのデータに基づいて、頑健で偏りのない特徴表現を学習する。
皮膚科学データセットISIC 2019について広範な実験を行い,本手法が既知のカテゴリの知識を有効活用し,新たな意味カテゴリーを発見できることを実験的に示した。
論文 参考訳(メタデータ) (2023-09-28T13:59:29Z) - The Art of Camouflage: Few-Shot Learning for Animal Detection and Segmentation [21.047026366450197]
カモフラージュされた物体の検出とセグメンテーションにおける数ショット学習の問題に対処する。
そこで我々は, Camouflaged インスタンスを効率的に検出・分割するフレームワーク FS-CDIS を提案する。
提案手法は,新たに収集したデータセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2023-04-15T01:33:14Z) - Spatial Reasoning for Few-Shot Object Detection [21.3564383157159]
本稿では,空間的推論フレームワークを提案する。
グラフ畳み込みネットワークをRoIとその関連性はそれぞれノードとエッジとして定義する。
提案手法は最先端の手法を著しく上回り, 広範囲なアブレーション研究により有効性を検証する。
論文 参考訳(メタデータ) (2022-11-02T12:38:08Z) - Novel Class Discovery without Forgetting [72.52222295216062]
我々は NCDwF: Novel Class Discovery without Forgetting の新たな実用的問題設定を特定し,定式化する。
ラベルのないデータから新しいカテゴリのインスタンスを段階的に発見する機械学習モデルを提案する。
CIFAR-10, CIFAR-100, ImageNet-1000に基づく実験プロトコルを導入し, 知識保持と新しいクラス発見のトレードオフを測定する。
論文 参考訳(メタデータ) (2022-07-21T17:54:36Z) - Exploiting Unlabeled Data with Vision and Language Models for Object
Detection [64.94365501586118]
堅牢で汎用的なオブジェクト検出フレームワークを構築するには、より大きなラベルスペースとより大きなトレーニングデータセットへのスケーリングが必要である。
本稿では,近年の視覚と言語モデルで利用可能なリッチなセマンティクスを利用して,未ラベル画像中のオブジェクトのローカライズと分類を行う手法を提案する。
生成した擬似ラベルの価値を,オープン語彙検出と半教師付きオブジェクト検出の2つのタスクで示す。
論文 参考訳(メタデータ) (2022-07-18T21:47:15Z) - Towards Open-Set Object Detection and Discovery [38.81806249664884]
我々は新しいタスク、すなわちOpen-Set Object Detection and Discovery(OSODD)を提案する。
本稿では、まずオープンセットオブジェクト検出器を用いて、未知のオブジェクトと未知のオブジェクトの両方を予測する2段階の手法を提案する。
そこで,予測対象を教師なしで表現し,未知対象の集合から新たなカテゴリを発見する。
論文 参考訳(メタデータ) (2022-04-12T08:07:01Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
一つのホットアプローチで学習したクラス埋め込みの誤差統計と、自然言語処理や知識グラフから意味的に構造化された埋め込みを比較した。
本稿では,キーポイントベースおよびトランスフォーマーベースオブジェクト検出アーキテクチャの知識埋め込み設計を提案する。
論文 参考訳(メタデータ) (2021-12-21T17:10:21Z) - Learning Open-World Object Proposals without Learning to Classify [110.30191531975804]
本研究では,各領域の位置と形状がどの接地トラストオブジェクトとどのように重なり合うかによって,各領域の目的性を純粋に推定する,分類不要なオブジェクトローカライゼーションネットワークを提案する。
この単純な戦略は一般化可能な対象性を学び、クロスカテゴリの一般化に関する既存の提案より優れている。
論文 参考訳(メタデータ) (2021-08-15T14:36:02Z) - Unsupervised Discovery of the Long-Tail in Instance Segmentation Using
Hierarchical Self-Supervision [3.841232411073827]
本稿では,インスタンスセグメンテーションにおける長尾カテゴリの非監視的発見を行う手法を提案する。
我々のモデルは、一般的なカテゴリよりも新しくよりきめ細かなオブジェクトを発見できる。
本モデルでは,LVISにおいて,教師付きおよび部分教師付き手法と比較して,競争力のある定量的結果が得られることを示す。
論文 参考訳(メタデータ) (2021-04-02T22:05:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。