論文の概要: NovelCraft: A Dataset for Novelty Detection and Discovery in Open Worlds
- arxiv url: http://arxiv.org/abs/2206.11736v3
- Date: Tue, 28 Mar 2023 18:27:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-30 19:01:21.880834
- Title: NovelCraft: A Dataset for Novelty Detection and Discovery in Open Worlds
- Title(参考訳): NovelCraft: オープンワールドにおけるノベルティ検出と発見のためのデータセット
- Authors: Patrick Feeney, Sarah Schneider, Panagiotis Lymperopoulos, Li-Ping
Liu, Matthias Scheutz, Michael C. Hughes
- Abstract要約: NovelCraftデータセットには、修正されたMinecraft環境内のpogoスティックアセンブリタスクを完了したエージェントが見るイメージと象徴的な世界状態のエピソードデータが含まれている。
我々のビジュアルノベルティ検出ベンチマークは、一般的な領域内測定値で最上位の手法は、より単純な代替手段により性能が向上する可能性があることを見出した。
さらにマルチモーダルなノベルティ検出実験により、視覚情報とシンボル情報を融合する手法は、検出までの時間と全体的な識別を改善することが示唆された。
- 参考スコア(独自算出の注目度): 14.265615838391703
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In order for artificial agents to successfully perform tasks in changing
environments, they must be able to both detect and adapt to novelty. However,
visual novelty detection research often only evaluates on repurposed datasets
such as CIFAR-10 originally intended for object classification, where images
focus on one distinct, well-centered object. New benchmarks are needed to
represent the challenges of navigating the complex scenes of an open world. Our
new NovelCraft dataset contains multimodal episodic data of the images and
symbolic world-states seen by an agent completing a pogo stick assembly task
within a modified Minecraft environment. In some episodes, we insert novel
objects of varying size within the complex 3D scene that may impact gameplay.
Our visual novelty detection benchmark finds that methods that rank best on
popular area-under-the-curve metrics may be outperformed by simpler
alternatives when controlling false positives matters most. Further multimodal
novelty detection experiments suggest that methods that fuse both visual and
symbolic information can improve time until detection as well as overall
discrimination. Finally, our evaluation of recent generalized category
discovery methods suggests that adapting to new imbalanced categories in
complex scenes remains an exciting open problem.
- Abstract(参考訳): 人工エージェントが環境変化におけるタスクを成功させるためには、新規性の検出と適応が可能である必要がある。
しかし、視覚ノベルティ検出研究は、もともとオブジェクト分類を意図したcifar-10のような再利用可能なデータセットのみを評価することが多い。
新しいベンチマークは、オープン世界の複雑なシーンをナビゲートする上での課題を表すために必要である。
新しいノベルクラフトデータセットは、イメージのマルチモーダルエピソードデータと、修正マインクラフト環境内でpogoスティックアセンブリタスクを完了するエージェントが見るシンボリックワールドステートを含む。
いくつかのエピソードでは、ゲームプレイに影響を与える可能性のある複雑な3dシーンに、さまざまなサイズの新しいオブジェクトを挿入する。
我々の視覚的ノベルティ検出ベンチマークは、偽陽性を制御する場合、より単純な代替手段によって、最もよく評価される手法が最も重要であることを発見した。
さらにマルチモーダルなノベルティ検出実験により、視覚情報とシンボル情報を融合する手法は、検出までの時間と全体的な識別を改善することが示唆された。
最後に,最近の一般化されたカテゴリ発見手法の評価から,複雑なシーンにおける新しい不均衡カテゴリへの適応はいまだにエキサイティングな問題であることが示唆された。
関連論文リスト
- Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation [58.37525311718006]
OVAD(Open-vocabulary Aero Object Detection)という,航空物体検出問題の新しい定式化を行った。
本稿では,CLIP-activated students-Teacher DetectionフレームワークであるCastDetを提案する。
本フレームワークは,ロバストなローカライズ教師といくつかのボックス選択戦略を統合し,新しいオブジェクトの高品質な提案を生成する。
論文 参考訳(メタデータ) (2024-11-04T12:59:13Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Zero-shot Degree of Ill-posedness Estimation for Active Small Object Change Detection [8.977792536037956]
日常的な屋内ナビゲーションでは、ロボットは区別できない小さな変化物体を検出する必要がある。
既存の技術は、変更検出モデルを正規化するために、高品質なクラス固有オブジェクトに依存している。
本研究では,受動とアクティブビジョンの両方を改善するために,DoIの概念を検討する。
論文 参考訳(メタデータ) (2024-05-10T01:56:39Z) - Find n' Propagate: Open-Vocabulary 3D Object Detection in Urban Environments [67.83787474506073]
我々は,現在のLiDARに基づく3Dオブジェクト検出システムの限界に対処する。
本稿では,3次元OVタスクに対する汎用textscFind n' Propagate アプローチを提案する。
我々は、新しいオブジェクトクラスに対する平均精度(AP)を最大3.97倍に向上させる。
論文 参考訳(メタデータ) (2024-03-20T12:51:30Z) - OpenPatch: a 3D patchwork for Out-Of-Distribution detection [16.262921993755892]
そこで本研究では,実世界のクラウドサンプルに対して,参照既知のデータが合成された場合のセマンティックノベルティ検出の課題について述べる。
OpenPatchは、トレーニング済みの大きなモデルの上に構築され、その中間機能から、既知の各クラスを記述するパッチ表現のセットを単純に抽出する。
OpenPatchは、全例と数例の既知のサンプルシナリオの両方で優れていることを実証します。
論文 参考訳(メタデータ) (2023-10-05T08:49:51Z) - Look Around and Learn: Self-Training Object Detection by Exploration [23.620820805804616]
エージェントは、事前訓練されたオフザシェルフ検出器を使用して環境を探索し、オブジェクトを検出し、擬似ラベルを関連付ける。
同じオブジェクトの擬似ラベルが、異なる視点で一貫性を持っていなければならないと仮定することで、ハードサンプルをマイニングするためにLook Aroundという探索ポリシーを学びます。
我々は現在の最先端の統一されたベンチマークを実装し、既存の探索政策や知覚メカニズムと比較する。
論文 参考訳(メタデータ) (2023-02-07T16:26:45Z) - Spatial Reasoning for Few-Shot Object Detection [21.3564383157159]
本稿では,空間的推論フレームワークを提案する。
グラフ畳み込みネットワークをRoIとその関連性はそれぞれノードとエッジとして定義する。
提案手法は最先端の手法を著しく上回り, 広範囲なアブレーション研究により有効性を検証する。
論文 参考訳(メタデータ) (2022-11-02T12:38:08Z) - OW-DETR: Open-world Detection Transformer [90.56239673123804]
オープンワールドオブジェクト検出のための新しいエンドツーエンドトランスフォーマーベースのフレームワークOW-DETRを提案する。
OW-DETRは3つの専用コンポーネント、すなわち注目駆動の擬似ラベル、新規性分類、オブジェクトネススコアから構成される。
我々のモデルは、最近導入されたOWODアプローチであるOREよりも優れており、リコールの度合いは1.8%から3.3%である。
論文 参考訳(メタデータ) (2021-12-02T18:58:30Z) - The Pursuit of Knowledge: Discovering and Localizing Novel Categories
using Dual Memory [85.01439251151203]
我々は,未ラベルの大規模データセットにおける新しいオブジェクトの発見と位置決定の課題であるオブジェクトカテゴリ発見に取り組む。
2つのメモリモジュールを用いて,オブジェクトカテゴリに関する事前知識を用いて新たなカテゴリを探索する手法を提案する。
検出器の性能をCOCOのミニバルデータセットで示し、そのインザワイルド機能を実証します。
論文 参考訳(メタデータ) (2021-05-04T17:55:59Z) - Any-Shot Object Detection [81.88153407655334]
「アニーショット検出」とは、全く見えず、数発のカテゴリが推論中に同時に共起できる場所である。
我々は、ゼロショットと少数ショットの両方のオブジェクトクラスを同時に検出できる、統合された任意のショット検出モデルを提案する。
我々のフレームワークは、ゼロショット検出とFewショット検出タスクにのみ使用できる。
論文 参考訳(メタデータ) (2020-03-16T03:43:15Z) - SVIRO: Synthetic Vehicle Interior Rear Seat Occupancy Dataset and
Benchmark [11.101588888002045]
SVIROは10台の異なる車両の旅客室におけるシーンの合成データセットである。
限られたバリエーションに基づいて学習した際の一般化能力と信頼性について、機械学習に基づくアプローチを解析する。
論文 参考訳(メタデータ) (2020-01-10T14:44:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。