論文の概要: Urdu News Article Recommendation Model using Natural Language Processing
Techniques
- arxiv url: http://arxiv.org/abs/2206.11862v1
- Date: Sun, 29 May 2022 12:43:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-27 04:11:22.169099
- Title: Urdu News Article Recommendation Model using Natural Language Processing
Techniques
- Title(参考訳): 自然言語処理手法を用いたurduニュース記事推薦モデル
- Authors: Syed Zain Abbas, Dr. Arif ur Rahman, Abdul Basit Mughal, Syed Mujtaba
Haider
- Abstract要約: 提案するフレームワークは,ユーザの興味によってUrduニュースを予測するのに役立つだろう。
記事の類似度が60%を超えると、このニュースが推奨される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There are several online newspapers in urdu but for the users it is difficult
to find the content they are looking for because these most of them contain
irrelevant data and most users did not get what they want to retrieve. Our
proposed framework will help to predict Urdu news in the interests of users and
reduce the users searching time for news. For this purpose, NLP techniques are
used for pre-processing, and then TF-IDF with cosine similarity is used for
gaining the highest similarity and recommended news on user preferences.
Moreover, the BERT language model is also used for similarity, and by using the
BERT model similarity increases as compared to TF-IDF so the approach works
better with the BERT language model and recommends news to the user on their
interest. The news is recommended when the similarity of the articles is above
60 percent.
- Abstract(参考訳): urduにはいくつかのオンライン新聞があるが、ユーザーが探しているコンテンツを見つけるのは難しい。
提案するフレームワークは,Urduニュースをユーザの興味によって予測し,ニュース検索時間を短縮する上で有効である。
この目的のために、NLP技術は前処理に使われ、その後、コサイン類似性を持つTF-IDFは、ユーザの好みに応じて最高の類似性と推奨ニュースを得るために使用される。
さらに、BERT言語モデルも類似性のために使用されており、TF-IDFと比較してBERTモデルとの類似性を高めることにより、アプローチはBERT言語モデルとよりよく機能し、興味のあるニュースをユーザに推奨する。
記事の類似度が60%を超えると、このニュースが推奨される。
関連論文リスト
- Text Matching Improves Sequential Recommendation by Reducing Popularity
Biases [48.272381505993366]
TASTEは、アイテムの識別子と属性を使用して、アイテムとユーザとイテムのインタラクションを言語化する。
実験の結果,TASTEはシーケンシャルレコメンデーションデータセットにおいて最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-08-27T07:44:33Z) - Leveraging Language Identification to Enhance Code-Mixed Text
Classification [0.7340017786387767]
既存のディープラーニングモデルは、コード混合テキストの暗黙の言語情報を活用できない。
本研究の目的は,低リソースのCode-Mixed Hindi- Englishデータセット上でのBERTモデルの性能向上である。
論文 参考訳(メタデータ) (2023-06-08T06:43:10Z) - Description-Based Text Similarity [59.552704474862004]
我々は、その内容の抽象的な記述に基づいて、テキストを検索する必要性を特定する。
そこで本研究では,近隣の標準探索で使用する場合の精度を大幅に向上する代替モデルを提案する。
論文 参考訳(メタデータ) (2023-05-21T17:14:31Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Study of Encoder-Decoder Architectures for Code-Mix Search Query
Translation [0.0]
私たちが受け取るクエリの多くはコードミックスであり、特にHinglishは英語(ラテン語)スクリプトで書かれた1つ以上のヒンディー語のクエリである。
本稿では,これらのクエリをユーザが検索できるように,コードミックスクエリ変換のためのトランスフォーマーベースのアプローチを提案する。
モデルは現在、アプリとウェブサイトで公開されており、数百万のクエリーを提供している。
論文 参考訳(メタデータ) (2022-08-07T12:59:50Z) - Language Identification of Hindi-English tweets using code-mixed BERT [0.0]
この研究は、ヒンディー語-英語-ウルドゥー語混成テキストのデータ収集を言語事前学習に利用し、ヒンディー語-英語混成テキストはその後の単語レベルの言語分類に利用している。
その結果、コードミックスデータ上で事前学習された表現は、モノリンガルデータによるより良い結果をもたらすことがわかった。
論文 参考訳(メタデータ) (2021-07-02T17:51:36Z) - Paraphrastic Representations at Scale [134.41025103489224]
私たちは、英語、アラビア語、ドイツ語、フランス語、スペイン語、ロシア語、トルコ語、中国語の訓練されたモデルをリリースします。
我々はこれらのモデルを大量のデータでトレーニングし、元の論文から大幅に性能を向上した。
論文 参考訳(メタデータ) (2021-04-30T16:55:28Z) - Towards Emotion Recognition in Hindi-English Code-Mixed Data: A
Transformer Based Approach [0.0]
感情検出のためのラベル付きhinglishデータセットを提案する。
ヒンディー語と英語の混成ツイートの感情を検出するための深層学習に基づくアプローチに注目した。
論文 参考訳(メタデータ) (2021-02-19T14:07:20Z) - NewsBERT: Distilling Pre-trained Language Model for Intelligent News
Application [56.1830016521422]
本稿では,学習済み言語モデルを抽出し,効率的なニュースインテリジェンスを実現するNewsBERTを提案する。
そこで本研究では,教師と学生の共学モデルを協調的に学習するための,教師と学生の共学学習・蒸留の枠組みを設計する。
実験では,NewsBERTはより小さなモデルで,様々なインテリジェントなニュースアプリケーションのモデル性能を効果的に向上させることができる。
論文 参考訳(メタデータ) (2021-02-09T15:41:12Z) - Viable Threat on News Reading: Generating Biased News Using Natural
Language Models [49.90665530780664]
公開されている言語モデルは、入力されたオリジナルニュースに基づいてバイアスのあるニュースコンテンツを確実に生成できることを示す。
また、制御可能なテキスト生成を用いて、多数の高品質な偏りのあるニュース記事を生成することができることを示す。
論文 参考訳(メタデータ) (2020-10-05T16:55:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。