How many labelers do you have? A closer look at gold-standard labels
- URL: http://arxiv.org/abs/2206.12041v2
- Date: Tue, 4 Jun 2024 23:23:11 GMT
- Title: How many labelers do you have? A closer look at gold-standard labels
- Authors: Chen Cheng, Hilal Asi, John Duchi,
- Abstract summary: We show how access to non-aggregated label information can make training well-calibrated models more feasible than it is with gold-standard labels.
We make several predictions for real-world datasets, including when non-aggregate labels should improve learning performance.
- Score: 10.637125300701795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The construction of most supervised learning datasets revolves around collecting multiple labels for each instance, then aggregating the labels to form a type of "gold-standard". We question the wisdom of this pipeline by developing a (stylized) theoretical model of this process and analyzing its statistical consequences, showing how access to non-aggregated label information can make training well-calibrated models more feasible than it is with gold-standard labels. The entire story, however, is subtle, and the contrasts between aggregated and fuller label information depend on the particulars of the problem, where estimators that use aggregated information exhibit robust but slower rates of convergence, while estimators that can effectively leverage all labels converge more quickly if they have fidelity to (or can learn) the true labeling process. The theory makes several predictions for real-world datasets, including when non-aggregate labels should improve learning performance, which we test to corroborate the validity of our predictions.
Related papers
- You can't handle the (dirty) truth: Data-centric insights improve pseudo-labeling [60.27812493442062]
We show the importance of investigating labeled data quality to improve any pseudo-labeling method.
Specifically, we introduce a novel data characterization and selection framework called DIPS to extend pseudo-labeling.
We demonstrate the applicability and impact of DIPS for various pseudo-labeling methods across an extensive range of real-world datasets.
arXiv Detail & Related papers (2024-06-19T17:58:40Z) - Towards Imbalanced Large Scale Multi-label Classification with Partially
Annotated Labels [8.977819892091]
Multi-label classification is a widely encountered problem in daily life, where an instance can be associated with multiple classes.
In this work, we address the issue of label imbalance and investigate how to train neural networks using partial labels.
arXiv Detail & Related papers (2023-07-31T21:50:48Z) - Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations [91.67511167969934]
imprecise label learning (ILL) is a framework for the unification of learning with various imprecise label configurations.
We demonstrate that ILL can seamlessly adapt to partial label learning, semi-supervised learning, noisy label learning, and, more importantly, a mixture of these settings.
arXiv Detail & Related papers (2023-05-22T04:50:28Z) - Deep Partial Multi-Label Learning with Graph Disambiguation [27.908565535292723]
We propose a novel deep Partial multi-Label model with grAph-disambIguatioN (PLAIN)
Specifically, we introduce the instance-level and label-level similarities to recover label confidences.
At each training epoch, labels are propagated on the instance and label graphs to produce relatively accurate pseudo-labels.
arXiv Detail & Related papers (2023-05-10T04:02:08Z) - Acknowledging the Unknown for Multi-label Learning with Single Positive
Labels [65.5889334964149]
Traditionally, all unannotated labels are assumed as negative labels in single positive multi-label learning (SPML)
We propose entropy-maximization (EM) loss to maximize the entropy of predicted probabilities for all unannotated labels.
Considering the positive-negative label imbalance of unannotated labels, we propose asymmetric pseudo-labeling (APL) with asymmetric-tolerance strategies and a self-paced procedure to provide more precise supervision.
arXiv Detail & Related papers (2022-03-30T11:43:59Z) - Trustable Co-label Learning from Multiple Noisy Annotators [68.59187658490804]
Supervised deep learning depends on massive accurately annotated examples.
A typical alternative is learning from multiple noisy annotators.
This paper proposes a data-efficient approach, called emphTrustable Co-label Learning (TCL)
arXiv Detail & Related papers (2022-03-08T16:57:00Z) - Instance-Dependent Partial Label Learning [69.49681837908511]
Partial label learning is a typical weakly supervised learning problem.
Most existing approaches assume that the incorrect labels in each training example are randomly picked as the candidate labels.
In this paper, we consider instance-dependent and assume that each example is associated with a latent label distribution constituted by the real number of each label.
arXiv Detail & Related papers (2021-10-25T12:50:26Z) - A Study on the Autoregressive and non-Autoregressive Multi-label
Learning [77.11075863067131]
We propose a self-attention based variational encoder-model to extract the label-label and label-feature dependencies jointly.
Our model can therefore be used to predict all labels in parallel while still including both label-label and label-feature dependencies.
arXiv Detail & Related papers (2020-12-03T05:41:44Z) - Analysis of label noise in graph-based semi-supervised learning [2.4366811507669124]
In machine learning, one must acquire labels to help supervise a model that will be able to generalize to unseen data.
It is often the case that most of our data is unlabeled.
Semi-supervised learning (SSL) alleviates that by making strong assumptions about the relation between the labels and the input data distribution.
arXiv Detail & Related papers (2020-09-27T22:13:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.