論文の概要: Mutual Information-guided Knowledge Transfer for Novel Class Discovery
- arxiv url: http://arxiv.org/abs/2206.12063v1
- Date: Fri, 24 Jun 2022 03:52:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-28 02:27:26.982786
- Title: Mutual Information-guided Knowledge Transfer for Novel Class Discovery
- Title(参考訳): 新しいクラス発見のための相互情報案内知識伝達
- Authors: Chuyu Zhang, Chuanyang Hu, Ruijie Xu, Zhitong Gao, Qian He, Xuming He
- Abstract要約: 本稿では,目に見えるクラスと目に見えないクラス間で意味的知識を伝達する原理と一般的な手法を提案する。
提案手法は,いくつかのベンチマークにおいて,従来のSOTAよりも有意差があることが示唆された。
- 参考スコア(独自算出の注目度): 23.772336970389834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We tackle the novel class discovery problem, aiming to discover novel classes
in unlabeled data based on labeled data from seen classes. The main challenge
is to transfer knowledge contained in the seen classes to unseen ones. Previous
methods mostly transfer knowledge through sharing representation space or joint
label space. However, they tend to neglect the class relation between seen and
unseen categories, and thus the learned representations are less effective for
clustering unseen classes. In this paper, we propose a principle and general
method to transfer semantic knowledge between seen and unseen classes. Our
insight is to utilize mutual information to measure the relation between seen
classes and unseen classes in a restricted label space and maximizing mutual
information promotes transferring semantic knowledge. To validate the
effectiveness and generalization of our method, we conduct extensive
experiments both on novel class discovery and general novel class discovery
settings. Our results show that the proposed method outperforms previous SOTA
by a significant margin on several benchmarks.
- Abstract(参考訳): 本研究では,ラベル付きデータに基づくラベルなしデータから新しいクラスを発見することを目的とした,新しいクラス発見問題に取り組む。
主な課題は、見たクラスに含まれる知識を目に見えないものに移すことである。
従来の手法は主に表現空間や共同ラベル空間の共有を通じて知識を伝達する。
しかし、クラス間のクラス関係を無視する傾向があるため、学習された表現は目に見えないクラスをクラスタリングするのにあまり効果的ではない。
本稿では,目に見えるクラスと見当たらないクラスの間で意味知識を伝達する原則と一般的な方法を提案する。
本知見は, ラベル空間における参照クラスと未知クラスの関係を計測するために相互情報を活用することであり, 相互情報の最大化は意味知識の伝達を促進する。
提案手法の有効性と一般化を検証するため,新しいクラス発見と一般的なクラス発見設定について広範な実験を行った。
提案手法は,いくつかのベンチマークにおいて,従来のSOTAよりも優れた性能を示した。
関連論文リスト
- Self-Cooperation Knowledge Distillation for Novel Class Discovery [8.984031974257274]
新たなクラス発見(NCD)は、既知のクラスについて既に学んだ知識を活用することで、ラベルのないセットで未知のクラスと新しいクラスを発見することを目的としている。
本研究では, 自己協調的知識蒸留法 (SCKD) を提案し, 各トレーニングサンプル(既知の, 新規, ラベル付, ラベル付, 未ラベル) を, レビューと発見の両方に活用する。
論文 参考訳(メタデータ) (2024-07-02T03:49:48Z) - Enhancing Visual Continual Learning with Language-Guided Supervision [76.38481740848434]
継続的な学習は、モデルが以前獲得した知識を忘れずに新しいタスクを学習できるようにすることを目的としている。
ワンホットラベルが伝達する少ない意味情報は,タスク間の効果的な知識伝達を妨げている,と我々は主張する。
具体的には, PLM を用いて各クラスのセマンティックターゲットを生成し, 凍結し, 監視信号として機能する。
論文 参考訳(メタデータ) (2024-03-24T12:41:58Z) - Class-relation Knowledge Distillation for Novel Class Discovery [16.461242381109276]
主な課題は、既知のクラスデータの知識を新しいクラスの学習に転送することである。
本稿では,既知のクラスに基づいて学習したモデルの予測クラス分布に基づいて,新しいクラスに対するクラス関係表現を提案する。
本稿では,クラス関係表現を利用して新しいクラスの学習を規則化する新しい知識蒸留フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-18T11:35:57Z) - Novel Class Discovery without Forgetting [72.52222295216062]
我々は NCDwF: Novel Class Discovery without Forgetting の新たな実用的問題設定を特定し,定式化する。
ラベルのないデータから新しいカテゴリのインスタンスを段階的に発見する機械学習モデルを提案する。
CIFAR-10, CIFAR-100, ImageNet-1000に基づく実験プロトコルを導入し, 知識保持と新しいクラス発見のトレードオフを測定する。
論文 参考訳(メタデータ) (2022-07-21T17:54:36Z) - New Intent Discovery with Pre-training and Contrastive Learning [21.25371293641141]
新しい意図発見は、ユーザ発話から新しい意図カテゴリーを明らかにして、サポート対象クラスのセットを拡張することを目的としている。
既存のアプローチは通常、大量のラベル付き発話に依存する。
本稿では,クラスタリングのためのラベルなしデータにおける自己超越的信号を活用するために,新たなコントラスト損失を提案する。
論文 参考訳(メタデータ) (2022-05-25T17:07:25Z) - Long-tail Recognition via Compositional Knowledge Transfer [60.03764547406601]
末尾クラスの少数ショット問題に対処する長尾認識のための新しい戦略を導入する。
我々の目標は、情報に富んだ共通クラスから得られた知識を、意味的に類似しているがデータに富む稀なクラスに伝達することである。
実験結果から,本手法は稀なクラスにおいて,堅牢な共通クラス性能を維持しつつ,大幅な性能向上を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-12-13T15:48:59Z) - Novel Visual Category Discovery with Dual Ranking Statistics and Mutual
Knowledge Distillation [16.357091285395285]
我々は、新しいクラスから異なるセマンティックパーティションに非ラベリングなイメージをグループ化する問題に取り組む。
これは従来の半教師付き学習よりも現実的で難しい設定です。
本稿では,局所的な部分レベル情報に焦点をあてた2分岐学習フレームワークと,全体特性に焦点をあてた2分岐学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-07T17:14:40Z) - Open-Set Representation Learning through Combinatorial Embedding [62.05670732352456]
ラベル付きクラスとラベルなしクラスの両方の例に基づく表現学習を通じて、データセットにおける新しい概念を識別することに興味がある。
異種ラベル空間上の複数の教師付きメタクラス分類器によって与えられる構成知識を用いて、自然に未知のクラス内のサンプルをクラスタリングする学習手法を提案する。
提案アルゴリズムは,未確認クラスの識別性の向上と,新しいクラスに一般化可能な既知のクラス表現の学習を併用して,新しい概念を探索する。
論文 参考訳(メタデータ) (2021-06-29T11:51:57Z) - Efficient Conditional GAN Transfer with Knowledge Propagation across
Classes [85.38369543858516]
CGANは、無条件設定と比較して新しい知識移転の機会を提供します。
新しいクラスは、関連する古いクラスから知識を借りたり、トレーニングを改善するために知識を共有したりする。
新しいGAN転送手法は、古いクラスから新しいクラスへの知識を明示的に伝達する。
論文 参考訳(メタデータ) (2021-02-12T18:55:34Z) - Automatically Discovering and Learning New Visual Categories with
Ranking Statistics [145.89790963544314]
我々は,他のクラスをラベル付けした画像コレクションにおいて,新しいクラスを発見する問題に対処する。
汎用クラスタリングモデルを学び、後者を用いて、非競合データ中の新しいクラスを識別する。
我々は,標準分類ベンチマークに対するアプローチと,新しいカテゴリー発見法の性能を,有意なマージンで評価した。
論文 参考訳(メタデータ) (2020-02-13T18:53:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。