論文の概要: Novel Class Discovery without Forgetting
- arxiv url: http://arxiv.org/abs/2207.10659v1
- Date: Thu, 21 Jul 2022 17:54:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-22 12:22:31.265111
- Title: Novel Class Discovery without Forgetting
- Title(参考訳): 忘れることなく新しいクラス発見
- Authors: K J Joseph, Sujoy Paul, Gaurav Aggarwal, Soma Biswas, Piyush Rai, Kai
Han, Vineeth N Balasubramanian
- Abstract要約: 我々は NCDwF: Novel Class Discovery without Forgetting の新たな実用的問題設定を特定し,定式化する。
ラベルのないデータから新しいカテゴリのインスタンスを段階的に発見する機械学習モデルを提案する。
CIFAR-10, CIFAR-100, ImageNet-1000に基づく実験プロトコルを導入し, 知識保持と新しいクラス発見のトレードオフを測定する。
- 参考スコア(独自算出の注目度): 72.52222295216062
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humans possess an innate ability to identify and differentiate instances that
they are not familiar with, by leveraging and adapting the knowledge that they
have acquired so far. Importantly, they achieve this without deteriorating the
performance on their earlier learning. Inspired by this, we identify and
formulate a new, pragmatic problem setting of NCDwF: Novel Class Discovery
without Forgetting, which tasks a machine learning model to incrementally
discover novel categories of instances from unlabeled data, while maintaining
its performance on the previously seen categories. We propose 1) a method to
generate pseudo-latent representations which act as a proxy for (no longer
available) labeled data, thereby alleviating forgetting, 2) a
mutual-information based regularizer which enhances unsupervised discovery of
novel classes, and 3) a simple Known Class Identifier which aids generalized
inference when the testing data contains instances form both seen and unseen
categories. We introduce experimental protocols based on CIFAR-10, CIFAR-100
and ImageNet-1000 to measure the trade-off between knowledge retention and
novel class discovery. Our extensive evaluations reveal that existing models
catastrophically forget previously seen categories while identifying novel
categories, while our method is able to effectively balance between the
competing objectives. We hope our work will attract further research into this
newly identified pragmatic problem setting.
- Abstract(参考訳): 人間は、これまでに取得した知識を活用し、適応することによって、よく知らないインスタンスを識別し、区別する能力を持っている。
重要なのは、初期の学習のパフォーマンスを損なうことなく、これを達成することです。
これにより、ncdwfの新しい実用的問題設定を特定し、定式化する: 忘れずに新しいクラス発見、どの機械学習モデルがラベルのないデータから新しいインスタンスのカテゴリを段階的に発見するタスク、そして以前見たカテゴリでのパフォーマンスを維持する。
提案します
1) ラベル付きデータのプロキシとして機能し(もはや利用できない)、忘れを緩和する擬似ラテント表現を生成する方法。
2)新規クラスの教師なし発見を促進する相互情報に基づく正規化子
3) テストデータにインスタンスが含まれている場合の一般化推論を支援する単純なノウンクラス識別器。
CIFAR-10, CIFAR-100, ImageNet-1000に基づく実験プロトコルを導入し, 知識保持と新しいクラス発見のトレードオフを測定する。
広範な評価結果から,既存のモデルでは既見のカテゴリを壊滅的に忘れ,新たなカテゴリを識別していることが明らかとなった。
我々の研究が、この新しく特定された実用的問題にさらなる研究を惹きつけることを願っている。
関連論文リスト
- Happy: A Debiased Learning Framework for Continual Generalized Category Discovery [54.54153155039062]
本稿では,C-GCD(Continuous Generalized Category Discovery)の未探索課題について考察する。
C-GCDは、学習済みのクラスを認識する能力を維持しながら、ラベルのないデータから新しいクラスを漸進的に発見することを目的としている。
本稿では,ハードネスを意識したプロトタイプサンプリングとソフトエントロピー正規化を特徴とする,偏りのある学習フレームワークであるHappyを紹介する。
論文 参考訳(メタデータ) (2024-10-09T04:18:51Z) - Towards Novel Class Discovery: A Study in Novel Skin Lesions Clustering [22.24175320515204]
皮膚内視鏡画像データセットから新しい意味クラスを自動的に発見する新しいクラス発見フレームワークを提案する。
具体的には、まずコントラスト学習を用いて、既知のカテゴリと未知のカテゴリのすべてのデータに基づいて、頑健で偏りのない特徴表現を学習する。
皮膚科学データセットISIC 2019について広範な実験を行い,本手法が既知のカテゴリの知識を有効活用し,新たな意味カテゴリーを発見できることを実験的に示した。
論文 参考訳(メタデータ) (2023-09-28T13:59:29Z) - MetaGCD: Learning to Continually Learn in Generalized Category Discovery [26.732455383707798]
事前に定義されたクラスでトレーニングされたモデルが、ラベルのないデータに絶えず遭遇する実世界のシナリオを考察する。
目標は、既知のクラスのパフォーマンスを維持しながら、新しいクラスを継続的に発見することである。
そこで我々はMetaGCDと呼ばれる手法を提案し,忘れることなく漸進的に発見する方法を学習する。
論文 参考訳(メタデータ) (2023-08-21T22:16:49Z) - Proxy Anchor-based Unsupervised Learning for Continuous Generalized
Category Discovery [22.519873617950662]
ラベルなし集合上の新しいカテゴリを発見するために,教師なしクラスインクリメンタルな学習手法を提案する。
提案手法は,ラベル付きデータセット上の特徴抽出器とプロキシアンカーを微調整し,サンプルをラベル付きデータセット上の古いカテゴリと新しいカテゴリとクラスタに分割する。
実験により,提案手法は実世界のシナリオ下での細粒度データセットにおける最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-20T15:13:29Z) - Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) は、部分的にラベル付けされたデータを自動でクラスタリングすることを目的としている。
ラベル付きデータには、ラベル付きデータの既知のカテゴリだけでなく、新しいカテゴリのインスタンスも含まれている。
GCDの効果的な方法の1つは、ラベルなしデータの識別表現を学習するために自己教師付き学習を適用することである。
本稿では,クラスタリングの精度を効果的に向上する動的概念コントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-30T14:04:39Z) - PromptCAL: Contrastive Affinity Learning via Auxiliary Prompts for
Generalized Novel Category Discovery [39.03732147384566]
Generalized Novel Category Discovery (GNCD) 設定は、既知のクラスや新しいクラスから来るラベルなしのトレーニングデータを分類することを目的としている。
本稿では,この課題に対処するために,PromptCALと呼ばれる補助視覚プロンプトを用いたコントラスト親和性学習法を提案する。
提案手法は,クラストークンと視覚的プロンプトのための既知のクラスと新しいクラスのセマンティッククラスタリングを改善するために,信頼性の高いペアワイズサンプル親和性を発見する。
論文 参考訳(メタデータ) (2022-12-11T20:06:14Z) - Class-incremental Novel Class Discovery [76.35226130521758]
クラス増進型新規クラス発見(class-iNCD)の課題について検討する。
基本クラスに関する過去の情報を忘れないようにする,クラスiNCDのための新しい手法を提案する。
3つの共通ベンチマークで実施した実験により,本手法が最先端の手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2022-07-18T13:49:27Z) - New Intent Discovery with Pre-training and Contrastive Learning [21.25371293641141]
新しい意図発見は、ユーザ発話から新しい意図カテゴリーを明らかにして、サポート対象クラスのセットを拡張することを目的としている。
既存のアプローチは通常、大量のラベル付き発話に依存する。
本稿では,クラスタリングのためのラベルなしデータにおける自己超越的信号を活用するために,新たなコントラスト損失を提案する。
論文 参考訳(メタデータ) (2022-05-25T17:07:25Z) - Bridging Non Co-occurrence with Unlabeled In-the-wild Data for
Incremental Object Detection [56.22467011292147]
物体検出における破滅的忘れを緩和するために,いくつかの漸進的学習法が提案されている。
有効性にもかかわらず、これらの手法は新規クラスのトレーニングデータにラベルのないベースクラスの共起を必要とする。
そこで本研究では,新たな授業の訓練において,欠落した基本クラスが原因で生じる非発生を補うために,未ラベルのインザ・ザ・ワイルドデータを使用することを提案する。
論文 参考訳(メタデータ) (2021-10-28T10:57:25Z) - Neighborhood Contrastive Learning for Novel Class Discovery [79.14767688903028]
我々は,クラスタリング性能に重要な識別表現を学習するために,Neighborhood Contrastive Learningという新しいフレームワークを構築した。
これらの2つの成分がクラスタリング性能に大きく寄与し、我々のモデルが最先端の手法よりも大きなマージンで優れていることを実験的に実証した。
論文 参考訳(メタデータ) (2021-06-20T17:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。