論文の概要: PSP: Million-level Protein Sequence Dataset for Protein Structure
Prediction
- arxiv url: http://arxiv.org/abs/2206.12240v1
- Date: Fri, 24 Jun 2022 14:08:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-27 18:06:51.791217
- Title: PSP: Million-level Protein Sequence Dataset for Protein Structure
Prediction
- Title(参考訳): psp:タンパク質構造予測のための百万単位タンパク質配列データセット
- Authors: Sirui Liu, Jun Zhang, Haotian Chu, Min Wang, Boxin Xue, Ningxi Ni,
Jialiang Yu, Yuhao Xie, Zhenyu Chen, Mengyun Chen, Yuan Liu, Piya Patra, Fan
Xu, Jie Chen, Zidong Wang, Lijiang Yang, Fan Yu, Lei Chen, Yi Qin Gao
- Abstract要約: PSPと命名された,高いカバレッジと多様性を持つ最初の100万レベルのタンパク質構造予測データセットを提示する。
このデータセットは570k真構造配列(10TB)と745k相補的蒸留配列(15TB)からなる。
また、このデータセット上でのSOTAタンパク質構造予測モデルのベンチマークトレーニング手順も提供する。
- 参考スコア(独自算出の注目度): 34.11168458572554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Proteins are essential component of human life and their structures are
important for function and mechanism analysis. Recent work has shown the
potential of AI-driven methods for protein structure prediction. However, the
development of new models is restricted by the lack of dataset and benchmark
training procedure. To the best of our knowledge, the existing open source
datasets are far less to satisfy the needs of modern protein sequence-structure
related research. To solve this problem, we present the first million-level
protein structure prediction dataset with high coverage and diversity, named as
PSP. This dataset consists of 570k true structure sequences (10TB) and 745k
complementary distillation sequences (15TB). We provide in addition the
benchmark training procedure for SOTA protein structure prediction model on
this dataset. We validate the utility of this dataset for training by
participating CAMEO contest in which our model won the first place. We hope our
PSP dataset together with the training benchmark can enable a broader community
of AI/biology researchers for AI-driven protein related research.
- Abstract(参考訳): タンパク質は人間の生命の重要な構成要素であり、その構造は機能や機構解析に重要である。
近年の研究は、タンパク質構造予測のためのAI駆動手法の可能性を示している。
しかし、新しいモデルの開発はデータセットやベンチマークのトレーニング手順の欠如によって制限されている。
我々の知る限り、既存のオープンソースデータセットは、現代のタンパク質配列構造関連研究のニーズを満たすにははるかに少ない。
この問題を解決するために,PSPと命名された,高いカバレッジと多様性を有する最初の100万レベルのタンパク質構造予測データセットを提案する。
このデータセットは570k真の構造配列(10TB)と745k補完蒸留配列(15TB)からなる。
また、このデータセット上でのSOTAタンパク質構造予測モデルのベンチマークトレーニング手順も提供する。
CAMEOコンテストに参加することで,本データセットの有効性を検証し,本モデルが優勝した。
当社のPSPデータセットとトレーニングベンチマークが、AI駆動タンパク質研究のためのAI/生物学研究者の広範なコミュニティを可能にすることを願っています。
関連論文リスト
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - CPE-Pro: A Structure-Sensitive Deep Learning Method for Protein Representation and Origin Evaluation [7.161099050722313]
タンパク質構造評価用結晶対予測学習モデル(CPE-Pro)を開発した。
CPE-Proはタンパク質の構造情報を学習し、構造間の差異を捉え、4つのデータクラスの正確なトレーサビリティを実現する。
我々は Foldseek を用いてタンパク質構造を「構造配列」にエンコードし、タンパク質構造配列言語モデル SSLM を訓練した。
論文 参考訳(メタデータ) (2024-10-21T02:21:56Z) - NaNa and MiGu: Semantic Data Augmentation Techniques to Enhance Protein Classification in Graph Neural Networks [60.48306899271866]
本稿では,背骨化学および側鎖生物物理情報をタンパク質分類タスクに組み込む新しい意味データ拡張手法を提案する。
具体的には, 分子生物学的, 二次構造, 化学結合, およびタンパク質のイオン特性を活用し, 分類作業を容易にする。
論文 参考訳(メタデータ) (2024-03-21T13:27:57Z) - Structure-Informed Protein Language Model [38.019425619750265]
本稿では、構造情報をタンパク質言語モデルに抽出するためのリモートホモロジー検出の統合について紹介する。
この構造インフォームドトレーニングが下流タンパク質機能予測タスクに与える影響を評価する。
論文 参考訳(メタデータ) (2024-02-07T09:32:35Z) - Endowing Protein Language Models with Structural Knowledge [5.587293092389789]
本稿では,タンパク質構造データを統合することにより,タンパク質言語モデルを強化する新しいフレームワークを提案する。
PST(Protein Structure Transformer)と呼ばれる精製モデルは、小さなタンパク質構造データベース上でさらに事前訓練されている。
PSTは、タンパク質配列の最先端基盤モデルであるESM-2を一貫して上回り、タンパク質機能予測の新しいベンチマークを設定している。
論文 参考訳(メタデータ) (2024-01-26T12:47:54Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
タンパク質の熱安定性を正確に予測する能力は、様々なサブフィールドや生化学への応用において重要である。
タンパク質配列と構造的特徴を統合したESMによる効率的なアプローチを導入し, 単一点突然変異によるタンパク質の熱安定性変化を予測する。
論文 参考訳(メタデータ) (2023-12-07T03:25:49Z) - Protein 3D Graph Structure Learning for Robust Structure-based Protein
Property Prediction [43.46012602267272]
タンパク質の構造に基づく特性予測は、様々な生物学的タスクにおいて有望なアプローチとして現れてきた。
現在のプラクティスは、推論中に正確に予測された構造を用いるだけで、予測精度の顕著な低下に悩まされている。
本フレームワークはモデルに依存しず,予測構造と実験構造の両方の特性予測の改善に有効である。
論文 参考訳(メタデータ) (2023-10-14T08:43:42Z) - Data-Efficient Protein 3D Geometric Pretraining via Refinement of
Diffused Protein Structure Decoy [42.49977473599661]
有意義なタンパク質表現の学習は、構造に基づく薬物設計のような様々な生物学的下流のタスクにとって重要である。
本稿では,タンパク質事前学習のための統一的なフレームワークと,幾何学的,データ効率,およびタンパク質特異的プリテキストタスクであるRefineDiffを提案する。
論文 参考訳(メタデータ) (2023-02-05T14:13:32Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
配列ベースタンパク質言語モデル(pLM)の汎用的手法であるLM-Designを提案する。
pLMに軽量な構造アダプターを埋め込んだ構造手術を行い,構造意識を付加した構造手術を行った。
実験の結果,我々の手法は最先端の手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-02-03T10:49:52Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
タンパク質のクラスとアーキテクチャの正確な(geq$80%)予測を、低い(leq$3A)解像度で決定された構造から行うことができることを示す。
本稿では, 高速で低コストなタンパク質構造を低解像度で分類するための概念実証と, 機能予測への拡張の基礎を提供する。
論文 参考訳(メタデータ) (2020-08-11T15:01:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。