論文の概要: CPE-Pro: A Structure-Sensitive Deep Learning Method for Protein Representation and Origin Evaluation
- arxiv url: http://arxiv.org/abs/2410.15592v2
- Date: Wed, 23 Oct 2024 14:08:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:56:39.365803
- Title: CPE-Pro: A Structure-Sensitive Deep Learning Method for Protein Representation and Origin Evaluation
- Title(参考訳): CPE-Pro:タンパク質表現と起源評価のための構造感性深層学習法
- Authors: Wenrui Gou, Wenhui Ge, Yang Tan, Mingchen Li, Guisheng Fan, Huiqun Yu,
- Abstract要約: タンパク質構造評価用結晶対予測学習モデル(CPE-Pro)を開発した。
CPE-Proはタンパク質の構造情報を学習し、構造間の差異を捉え、4つのデータクラスの正確なトレーサビリティを実現する。
我々は Foldseek を用いてタンパク質構造を「構造配列」にエンコードし、タンパク質構造配列言語モデル SSLM を訓練した。
- 参考スコア(独自算出の注目度): 7.161099050722313
- License:
- Abstract: Protein structures are important for understanding their functions and interactions. Currently, many protein structure prediction methods are enriching the structure database. Discriminating the origin of structures is crucial for distinguishing between experimentally resolved and computationally predicted structures, evaluating the reliability of prediction methods, and guiding downstream biological studies. Building on works in structure prediction, We developed a structure-sensitive supervised deep learning model, Crystal vs Predicted Evaluator for Protein Structure (CPE-Pro), to represent and discriminate the origin of protein structures. CPE-Pro learns the structural information of proteins and captures inter-structural differences to achieve accurate traceability on four data classes, and is expected to be extended to more. Simultaneously, we utilized Foldseek to encode protein structures into "structure-sequences" and trained a protein Structural Sequence Language Model, SSLM. Preliminary experiments demonstrated that, compared to large-scale protein language models pre-trained on vast amounts of amino acid sequences, the "structure-sequence" enables the language model to learn more informative protein features, enhancing and optimizing structural representations. We have provided the code, model weights, and all related materials on https://github.com/GouWenrui/CPE-Pro-main.git.
- Abstract(参考訳): タンパク質の構造は、その機能や相互作用を理解するのに重要である。
現在、多くのタンパク質構造予測手法が構造データベースを充実させている。
構造の起源を識別することは、実験的に解決された構造と計算的に予測された構造を区別し、予測手法の信頼性を評価し、下流の生物学的研究を導くために重要である。
本研究では,構造予測における構造依存型深層学習モデルであるCrystal vs Predicted Evaluator for Protein Structure (CPE-Pro)を開発し,タンパク質構造の起源を表現・識別した。
CPE-Proはタンパク質の構造情報を学習し、構造間の差異を捉え、4つのデータクラスで正確なトレーサビリティを実現する。
同時に、Foldseekを用いてタンパク質構造を「構造配列」にエンコードし、タンパク質構造配列言語モデルSSLMを訓練した。
予備実験では、大量のアミノ酸配列で事前訓練された大規模タンパク質言語モデルと比較して、「構造系列」は、言語モデルがより情報的なタンパク質の特徴を学習し、構造表現の強化と最適化を可能にすることを示した。
我々は、コード、モデルウェイト、および関連するすべての資料をhttps://github.com/GouWenrui/CPE-Pro-main.git.comで提供しました。
関連論文リスト
- Protein Representation Learning with Sequence Information Embedding: Does it Always Lead to a Better Performance? [4.7077642423577775]
本稿では,アミノ酸構造表現のみに基づく局所幾何アライメント手法ProtLOCAを提案する。
本手法は,構造的に整合性のあるタンパク質ドメインとより迅速かつ正確にマッチングすることで,既存の配列および構造に基づく表現学習法より優れる。
論文 参考訳(メタデータ) (2024-06-28T08:54:37Z) - A Protein Structure Prediction Approach Leveraging Transformer and CNN
Integration [4.909112037834705]
本稿では、畳み込みニューラルネットワーク(CCN)を用いた2次元融合深層ニューラルネットワークモデルDstruCCNと、単一配列タンパク質構造予測のための教師付きトランスフォーマー言語モデルを採用する。
両者のトレーニング特徴を組み合わせ、タンパク質トランスフォーマー結合部位マトリックスを予測し、エネルギー最小化を用いて三次元構造を再構築する。
論文 参考訳(メタデータ) (2024-02-29T12:24:20Z) - Endowing Protein Language Models with Structural Knowledge [5.587293092389789]
本稿では,タンパク質構造データを統合することにより,タンパク質言語モデルを強化する新しいフレームワークを提案する。
PST(Protein Structure Transformer)と呼ばれる精製モデルは、小さなタンパク質構造データベース上でさらに事前訓練されている。
PSTは、タンパク質配列の最先端基盤モデルであるESM-2を一貫して上回り、タンパク質機能予測の新しいベンチマークを設定している。
論文 参考訳(メタデータ) (2024-01-26T12:47:54Z) - Protein 3D Graph Structure Learning for Robust Structure-based Protein
Property Prediction [43.46012602267272]
タンパク質の構造に基づく特性予測は、様々な生物学的タスクにおいて有望なアプローチとして現れてきた。
現在のプラクティスは、推論中に正確に予測された構造を用いるだけで、予測精度の顕著な低下に悩まされている。
本フレームワークはモデルに依存しず,予測構造と実験構造の両方の特性予測の改善に有効である。
論文 参考訳(メタデータ) (2023-10-14T08:43:42Z) - CCPL: Cross-modal Contrastive Protein Learning [47.095862120116976]
我々は、新しい教師なしタンパク質構造表現事前学習法、クロスモーダルコントラスト型タンパク質学習(CCPL)を導入する。
CCPLは堅牢なタンパク質言語モデルを活用し、教師なしのコントラストアライメントを用いて構造学習を強化する。
さまざまなベンチマークでモデルを評価し,フレームワークの優位性を実証した。
論文 参考訳(メタデータ) (2023-03-19T08:19:10Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
配列ベースタンパク質言語モデル(pLM)の汎用的手法であるLM-Designを提案する。
pLMに軽量な構造アダプターを埋め込んだ構造手術を行い,構造意識を付加した構造手術を行った。
実験の結果,我々の手法は最先端の手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-02-03T10:49:52Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
タンパク質のクラスとアーキテクチャの正確な(geq$80%)予測を、低い(leq$3A)解像度で決定された構造から行うことができることを示す。
本稿では, 高速で低コストなタンパク質構造を低解像度で分類するための概念実証と, 機能予測への拡張の基礎を提供する。
論文 参考訳(メタデータ) (2020-08-11T15:01:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。