ModLaNets: Learning Generalisable Dynamics via Modularity and Physical
Inductive Bias
- URL: http://arxiv.org/abs/2206.12325v1
- Date: Fri, 24 Jun 2022 14:54:25 GMT
- Title: ModLaNets: Learning Generalisable Dynamics via Modularity and Physical
Inductive Bias
- Authors: Yupu Lu, Shijie Lin, Guanqi Chen, Jia Pan
- Abstract summary: We propose a structural neural network framework with modularity and physical inductive bias.
This framework models the energy of each element using modularity and then construct the target dynamical system via Lagrangian mechanics.
We examine our framework for modelling double-pendulum or three-body systems with small training datasets.
- Score: 14.474273671369584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models are able to approximate one specific dynamical system
but struggle at learning generalisable dynamics, where dynamical systems obey
the same laws of physics but contain different numbers of elements (e.g.,
double- and triple-pendulum systems). To relieve this issue, we proposed the
Modular Lagrangian Network (ModLaNet), a structural neural network framework
with modularity and physical inductive bias. This framework models the energy
of each element using modularity and then construct the target dynamical system
via Lagrangian mechanics. Modularity is beneficial for reusing trained networks
and reducing the scale of networks and datasets. As a result, our framework can
learn from the dynamics of simpler systems and extend to more complex ones,
which is not feasible using other relevant physics-informed neural networks. We
examine our framework for modelling double-pendulum or three-body systems with
small training datasets, where our models achieve the best data efficiency and
accuracy performance compared with counterparts. We also reorganise our models
as extensions to model multi-pendulum and multi-body systems, demonstrating the
intriguing reusable feature of our framework.
Related papers
- Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Modular Deep Learning [120.36599591042908]
Transfer learning has recently become the dominant paradigm of machine learning.
It remains unclear how to develop models that specialise towards multiple tasks without incurring negative interference.
Modular deep learning has emerged as a promising solution to these challenges.
arXiv Detail & Related papers (2023-02-22T18:11:25Z) - Compositional Learning of Dynamical System Models Using Port-Hamiltonian
Neural Networks [32.707730631343416]
We present a framework for learning composite models of dynamical systems from data.
neural network submodels are trained on trajectory data generated by relatively simple subsystems.
We demonstrate the novel capabilities of the proposed framework through numerical examples.
arXiv Detail & Related papers (2022-12-01T22:22:38Z) - Learning Modular Simulations for Homogeneous Systems [23.355189771765644]
We present a modular simulation framework for modeling homogeneous multibody dynamical systems.
An arbitrary number of modules can be combined to simulate systems of a variety of coupling topologies.
We show that our models can be transferred to new system configurations lower with data requirement and training effort, compared to those trained from scratch.
arXiv Detail & Related papers (2022-10-28T17:48:01Z) - Symplectic Momentum Neural Networks -- Using Discrete Variational
Mechanics as a prior in Deep Learning [7.090165638014331]
This paper introduces Sympic Momentum Networks (SyMo) as models from a discrete formulation of mechanics for non-separable mechanical systems.
We show that such combination not only allows these models tol earn from limited data but also provides the models with the capability of preserving the symplectic form and show better long-term behaviour.
arXiv Detail & Related papers (2022-01-20T16:33:19Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Multi-Robot Deep Reinforcement Learning for Mobile Navigation [82.62621210336881]
We propose a deep reinforcement learning algorithm with hierarchically integrated models (HInt)
At training time, HInt learns separate perception and dynamics models, and at test time, HInt integrates the two models in a hierarchical manner and plans actions with the integrated model.
Our mobile navigation experiments show that HInt outperforms conventional hierarchical policies and single-source approaches.
arXiv Detail & Related papers (2021-06-24T19:07:40Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
arXiv Detail & Related papers (2020-01-17T00:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.