Attention-Guided Autoencoder for Automated Progression Prediction of
Subjective Cognitive Decline with Structural MRI
- URL: http://arxiv.org/abs/2206.12480v1
- Date: Fri, 24 Jun 2022 19:35:56 GMT
- Title: Attention-Guided Autoencoder for Automated Progression Prediction of
Subjective Cognitive Decline with Structural MRI
- Authors: Hao Guan, Ling Yue, Pew-Thian Yap, Andrea Bozoki, Mingxia Liu
- Abstract summary: We propose an attention-guided autoencoder model for efficient cross-domain adaptation.
It is composed of four key components: 1) a feature encoding module for learning shared subspace representations of different domains, 2) an attention module for automatically locating discriminative brain regions of interest defined in brain atlases, 3) a decoding module for reconstructing the original input, 4) a classification module for identification of brain diseases.
The proposed model is straightforward to train and test with only 5-10 seconds on CPUs and is suitable for medical tasks with small datasets.
- Score: 25.149830893850005
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Subjective cognitive decline (SCD) is a preclinical stage of Alzheimer's
disease (AD) which occurs even before mild cognitive impairment (MCI).
Progressive SCD will convert to MCI with the potential of further evolving to
AD. Therefore, early identification of progressive SCD with neuroimaging
techniques (e.g., structural MRI) is of great clinical value for early
intervention of AD. However, existing MRI-based machine/deep learning methods
usually suffer the small-sample-size problem which poses a great challenge to
related neuroimaging analysis. The central question we aim to tackle in this
paper is how to leverage related domains (e.g., AD/NC) to assist the
progression prediction of SCD. Meanwhile, we are concerned about which brain
areas are more closely linked to the identification of progressive SCD. To this
end, we propose an attention-guided autoencoder model for efficient
cross-domain adaptation which facilitates the knowledge transfer from AD to
SCD. The proposed model is composed of four key components: 1) a feature
encoding module for learning shared subspace representations of different
domains, 2) an attention module for automatically locating discriminative brain
regions of interest defined in brain atlases, 3) a decoding module for
reconstructing the original input, 4) a classification module for
identification of brain diseases. Through joint training of these four modules,
domain invariant features can be learned. Meanwhile, the brain disease related
regions can be highlighted by the attention mechanism. Extensive experiments on
the publicly available ADNI dataset and a private CLAS dataset have
demonstrated the effectiveness of the proposed method. The proposed model is
straightforward to train and test with only 5-10 seconds on CPUs and is
suitable for medical tasks with small datasets.
Related papers
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - MHATC: Autism Spectrum Disorder identification utilizing multi-head
attention encoder along with temporal consolidation modules [11.344829880346353]
Resting-state fMRI is commonly used for diagnosing Autism Spectrum Disorder (ASD) by using network-based functional connectivity.
We propose a novel deep learning architecture (MHATC) consisting of multi-head attention and temporal consolidation modules for classifying an individual as a patient of ASD.
arXiv Detail & Related papers (2021-12-27T07:50:16Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
We propose an end-to-end deep learning approach for automated diagnosis of Alzheimer's disease (AD) and localization of important brain regions related to the disease from sMRI data.
Our approach has been evaluated on two publicly accessible datasets for two classification tasks of AD vs. cognitively normal (CN) and progressive MCI (pMCI) vs. stable MCI (sMCI)
The experimental results indicate that our approach outperforms the state-of-the-art approaches, including those using multi-model and 3D CNN methods.
arXiv Detail & Related papers (2021-07-28T07:19:00Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disease which destroys brain cells and causes loss to patient's memory.
In this paper, we have proposed a smart and accurate way of diagnosing AD based on a two-dimensional deep convolutional neural network (2D-DCNN) using imbalanced three-dimensional MRI dataset.
The model classifies MRI into three categories: AD, mild cognitive impairment, and normal control: and has achieved 99.89% classification accuracy with imbalanced classes.
arXiv Detail & Related papers (2021-01-08T06:51:08Z) - An Explainable 3D Residual Self-Attention Deep Neural Network FOR Joint
Atrophy Localization and Alzheimer's Disease Diagnosis using Structural MRI [22.34325971680329]
We have proposed a novel computer-aided approach for early diagnosis of Alzheimer's disease by introducing an explainable 3D Residual Attention Deep Neural Network (3D ResAttNet) for end-to-end learning from sMRI scans.
The experimental results show that the proposed approach has a competitive advantage over the state-of-the-art models in terms of accuracy performance and generalizability.
arXiv Detail & Related papers (2020-08-10T11:08:55Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Explainable and Scalable Machine-Learning Algorithms for Detection of
Autism Spectrum Disorder using fMRI Data [0.2578242050187029]
Our proposed deep-learning model ASD-DiagNet exhibits consistently high accuracy for classification of ASD brain scans from neurotypical scans.
Our method, called Auto-ASD-Network, uses a combination of deep-learning and Support Vector Machines (SVM) to classify ASD scans from neurotypical scans.
arXiv Detail & Related papers (2020-03-02T18:20:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.