MHATC: Autism Spectrum Disorder identification utilizing multi-head
attention encoder along with temporal consolidation modules
- URL: http://arxiv.org/abs/2201.00404v1
- Date: Mon, 27 Dec 2021 07:50:16 GMT
- Title: MHATC: Autism Spectrum Disorder identification utilizing multi-head
attention encoder along with temporal consolidation modules
- Authors: Ranjeet Ranjan Jha, Abhishek Bhardwaj, Devin Garg, Arnav Bhavsar,
Aditya Nigam
- Abstract summary: Resting-state fMRI is commonly used for diagnosing Autism Spectrum Disorder (ASD) by using network-based functional connectivity.
We propose a novel deep learning architecture (MHATC) consisting of multi-head attention and temporal consolidation modules for classifying an individual as a patient of ASD.
- Score: 11.344829880346353
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Resting-state fMRI is commonly used for diagnosing Autism Spectrum Disorder
(ASD) by using network-based functional connectivity. It has been shown that
ASD is associated with brain regions and their inter-connections. However,
discriminating based on connectivity patterns among imaging data of the control
population and that of ASD patients' brains is a non-trivial task. In order to
tackle said classification task, we propose a novel deep learning architecture
(MHATC) consisting of multi-head attention and temporal consolidation modules
for classifying an individual as a patient of ASD. The devised architecture
results from an in-depth analysis of the limitations of current deep neural
network solutions for similar applications. Our approach is not only robust but
computationally efficient, which can allow its adoption in a variety of other
research and clinical settings.
Related papers
- Diagnosis and Pathogenic Analysis of Autism Spectrum Disorder Using Fused Brain Connection Graph [14.00990852115585]
We propose a model for diagnosing Autism spectrum disorder (ASD) using multimodal magnetic resonance imaging (MRI) data.
Our approach integrates brain connectivity data fromDTI and functional MRI, employing graph neural networks (GNNs) for fused graph classification.
We analyze network node centrality, calculating degree, subgraph, and eigenvector centralities on a bimodal fused brain graph to identify pathological regions linked to ASD.
arXiv Detail & Related papers (2024-09-22T01:23:46Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Exploiting the Brain's Network Structure for Automatic Identification of
ADHD Subjects [70.37277191524755]
We show that the brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects.
We train our classifier with 776 subjects and test on 171 subjects provided by The Neuro Bureau for the ADHD-200 challenge.
arXiv Detail & Related papers (2023-06-15T16:22:57Z) - A Deep Probabilistic Spatiotemporal Framework for Dynamic Graph Representation Learning with Application to Brain Disorder Identification [5.563162319586206]
Recent applications of pattern recognition techniques on brain connectome classification using functional connectivity (FC) are shifting towards acknowledging aspects of brain connectivity across time.
In this paper, a deep non-temporalal variation Bayes framework is proposed to learn to identify autism spectrum disorder (ASD) in human participants.
The framework incorporates a spatial-aware recurrent neural network with an attention-based message passing scheme to capture richtemporal patterns across dynamic FC networks.
arXiv Detail & Related papers (2023-02-14T18:42:17Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
We propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis.
We first use a set of well-defined multiscale atlases to compute multiscale FCNs.
Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling.
arXiv Detail & Related papers (2022-09-22T04:17:57Z) - MEDUSA: Multi-scale Encoder-Decoder Self-Attention Deep Neural Network
Architecture for Medical Image Analysis [71.2022403915147]
We introduce MEDUSA, a multi-scale encoder-decoder self-attention mechanism tailored for medical image analysis.
We obtain state-of-the-art performance on challenging medical image analysis benchmarks including COVIDx, RSNA RICORD, and RSNA Pneumonia Challenge.
arXiv Detail & Related papers (2021-10-12T15:05:15Z) - Input Agnostic Deep Learning for Alzheimer's Disease Classification
Using Multimodal MRI Images [1.4848525762485871]
Alzheimer's disease (AD) is a progressive brain disorder that causes memory and functional impairments.
In this work, we utilize a multi-modal deep learning approach in classifying normal cognition, mild cognitive impairment and AD classes.
arXiv Detail & Related papers (2021-07-19T08:19:34Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Deep sr-DDL: Deep Structurally Regularized Dynamic Dictionary Learning to Integrate Multimodal and Dynamic Functional Connectomics data for Multidimensional Clinical Characterizations [5.200461964737113]
We propose a novel integrated framework that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography.
Our framework couples a generative model of the connectomics data with a deep network that predicts behavioral scores.
Our hybrid model outperforms several state-of-the-art approaches at clinical outcome prediction and learns interpretable multimodal neural signatures of brain organization.
arXiv Detail & Related papers (2020-08-27T23:43:56Z) - 4D Spatio-Temporal Deep Learning with 4D fMRI Data for Autism Spectrum
Disorder Classification [69.62333053044712]
We propose a 4D convolutional deep learning approach for ASD classification where we jointly learn from spatial and temporal data.
We employ 4D neural networks and convolutional-recurrent models which outperform a previous approach with an F1-score of 0.71 compared to an F1-score of 0.65.
arXiv Detail & Related papers (2020-04-21T17:19:06Z) - Explainable and Scalable Machine-Learning Algorithms for Detection of
Autism Spectrum Disorder using fMRI Data [0.2578242050187029]
Our proposed deep-learning model ASD-DiagNet exhibits consistently high accuracy for classification of ASD brain scans from neurotypical scans.
Our method, called Auto-ASD-Network, uses a combination of deep-learning and Support Vector Machines (SVM) to classify ASD scans from neurotypical scans.
arXiv Detail & Related papers (2020-03-02T18:20:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.