論文の概要: The syntax-lexicon tradeoff in writing
- arxiv url: http://arxiv.org/abs/2206.12485v1
- Date: Fri, 24 Jun 2022 19:57:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-28 15:25:47.106092
- Title: The syntax-lexicon tradeoff in writing
- Title(参考訳): 文章における構文語彙のトレードオフ
- Authors: Neguine Rezaii
- Abstract要約: 本研究は,ニューロタイプ個体の言語記述における単語の複雑さと統語規則の関係を評価する。
文章中の文を構成することは、語彙的項目と構文的項目の複雑さのトレードオフを伴うことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As speakers turn their thoughts into sentences, they maintain a balance
between the complexity of words and syntax. However, it is unclear whether this
syntax-lexicon tradeoff is unique to the spoken language production that is
under the pressure of rapid online processing. Alternatively, it is possible
that the tradeoff is a basic property of language irrespective of the modality
of production. This work evaluates the relationship between the complexity of
words and syntactic rules in the written language of neurotypical individuals
on three different topics. We found that similar to speaking, constructing
sentences in writing involves a tradeoff between the complexity of the lexical
and syntactic items. We also show that the reduced online processing demands
during writing allows for retrieving more complex words at the cost of
incorporating simpler syntax. This work further highlights the role of
accessibility of the elements of a sentence as the driving force in the
emergence of the syntax-lexicon tradeoff.
- Abstract(参考訳): 話し手が思考を文章化するにつれて、単語の複雑さと構文のバランスが保たれる。
しかし、この構文辞書のトレードオフが、高速オンライン処理の圧力下にある音声言語の生産に特有のものであるかどうかは不明である。
あるいは、生産のモダリティに関係なく、トレードオフが言語の基本的な特性である可能性もある。
本研究は,3つの異なる話題において,単語の複雑さと神経型個人の記述言語における統語規則の関係を評価する。
その結果,文章中の文を構成することは,語彙項目と構文項目の複雑さのトレードオフを伴うことがわかった。
また、書込み時のオンライン処理要求の低減により、より単純な構文を組み込むコストで、より複雑な単語を検索できることを示す。
この研究は、構文-語彙トレードオフの出現における駆動力としての文の要素のアクセシビリティの役割をさらに強調する。
関連論文リスト
- Investigating large language models for their competence in extracting grammatically sound sentences from transcribed noisy utterances [1.3597551064547497]
人間は、意味的に重要な内容と音声特有のノイズを区別する優れた認知能力を示す。
本研究では,大言語モデル (LLM) が類似語理解タスクを効果的に実行できるかを検討する。
論文 参考訳(メタデータ) (2024-10-07T14:55:20Z) - Quantifying the redundancy between prosody and text [67.07817268372743]
我々は大きな言語モデルを用いて、韻律と単語自体の間にどれだけの情報が冗長であるかを推定する。
単語が持つ情報と韻律情報の間には,複数の韻律的特徴にまたがる高い冗長性が存在する。
それでも、韻律的特徴はテキストから完全には予測できないことが観察され、韻律は単語の上下に情報を運ぶことが示唆された。
論文 参考訳(メタデータ) (2023-11-28T21:15:24Z) - EXPRESSO: A Benchmark and Analysis of Discrete Expressive Speech
Resynthesis [49.04496602282718]
テキストなし音声合成のための高品質な表現型音声データセットであるExpressoを紹介する。
このデータセットは、26の自発的表現スタイルで描画された読み上げ音声と即興対話の両方を含む。
自己監督型離散エンコーダの自動計測値を用いて再生品質を評価する。
論文 参考訳(メタデータ) (2023-08-10T17:41:19Z) - Discourse-Aware Text Simplification: From Complex Sentences to Linked
Propositions [11.335080241393191]
Text Simplification (TS)は、テキストの処理を容易にするために文を変更することを目的としている。
本稿では、複雑な英語文を分割し、言い換える、談話対応のTSアプローチを提案する。
単純化された文の上に意味層を置く最小命題のセマンティック階層を生成する。
論文 参考訳(メタデータ) (2023-08-01T10:10:59Z) - Conjunct Resolution in the Face of Verbal Omissions [51.220650412095665]
本稿では,テキスト上で直接動作する接続分解タスクを提案し,コーディネーション構造に欠けている要素を復元するために,分割・言い換えパラダイムを利用する。
クラウドソースアノテーションによる自然に発生する動詞の省略例を10万件以上を含む,大規模なデータセットをキュレートする。
我々は、このタスクのために様々な神経ベースラインをトレーニングし、最良の手法が適切なパフォーマンスを得る一方で、改善のための十分なスペースを残していることを示す。
論文 参考訳(メタデータ) (2023-05-26T08:44:02Z) - Syntactic Complexity Identification, Measurement, and Reduction Through
Controlled Syntactic Simplification [0.0]
本稿では,複合文と複合文を簡易文の集合に分割・言い換える,古典的な構文的依存性に基づく手法を提案する。
また,文の構文的複雑さを同定し,測定するアルゴリズムも導入した。
この研究は、WSDM-2023 Conferenceにおいて、Learning with Knowledge Graphs (IWLKG) に関する国際ワークショップで受け入れられ、発表された。
論文 参考訳(メタデータ) (2023-04-16T13:13:58Z) - Improve Retrieval-based Dialogue System via Syntax-Informed Attention [46.79601705850277]
文内構文情報と文間構文情報の両方を考慮したSIA, Syntax-Informed Attentionを提案する。
提案手法を広範に使用した3つのベンチマークで評価し,対話応答選択における本手法の一般的な優位性を示す実験結果を得た。
論文 参考訳(メタデータ) (2023-03-12T08:14:16Z) - Transcribing Natural Languages for The Deaf via Neural Editing Programs [84.0592111546958]
本研究の目的は,難聴者コミュニティのための自然言語文の書き起こしを目的とし,手話の発声を指示するグロス化の課題について検討することである。
以前のシーケンス・ツー・シーケンス言語モデルは、しばしば2つの異なる言語間の豊かな関係を捉えず、不満足な書き起こしにつながる。
異なる文法に拘わらず,単語の大部分を文と共有しながら,難聴コミュニケーションの容易な文を効果的に単純化することが観察された。
論文 参考訳(メタデータ) (2021-12-17T16:21:49Z) - Lexically-constrained Text Generation through Commonsense Knowledge
Extraction and Injection [62.071938098215085]
我々は、ある入力概念のセットに対して妥当な文を生成することを目的としているcommongenベンチマークに焦点を当てる。
生成したテキストの意味的正しさを高めるための戦略を提案する。
論文 参考訳(メタデータ) (2020-12-19T23:23:40Z) - XTE: Explainable Text Entailment [8.036150169408241]
あるテキストが論理的に他のテキストから続くかどうかを判断する作業である。
XTE (Explainable Text Entailment) は、テキストエンターメントを認識するための新しい複合アプローチである。
論文 参考訳(メタデータ) (2020-09-25T20:49:07Z) - Neural Syntactic Preordering for Controlled Paraphrase Generation [57.5316011554622]
私たちの研究は、構文変換を使用して、ソース文をソフトに"リオーダー"し、神経パラフレージングモデルをガイドします。
まず、入力文が与えられた場合、エンコーダ・デコーダモデルを用いて、実行可能な構文再構成のセットを導出する。
次に、提案した各再構成を用いて位置埋め込みのシーケンスを生成し、最終的なエンコーダ-デコーダパラフレーズモデルが特定の順序でソース語に従属することを奨励する。
論文 参考訳(メタデータ) (2020-05-05T09:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。