論文の概要: Improve Retrieval-based Dialogue System via Syntax-Informed Attention
- arxiv url: http://arxiv.org/abs/2303.06605v1
- Date: Sun, 12 Mar 2023 08:14:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-14 17:56:09.633431
- Title: Improve Retrieval-based Dialogue System via Syntax-Informed Attention
- Title(参考訳): 構文インフォームド・アテンションによる検索音声対話システムの改善
- Authors: Tengtao Song, Nuo Chen, Ji Jiang, Zhihong Zhu, Yuexian Zou
- Abstract要約: 文内構文情報と文間構文情報の両方を考慮したSIA, Syntax-Informed Attentionを提案する。
提案手法を広範に使用した3つのベンチマークで評価し,対話応答選択における本手法の一般的な優位性を示す実験結果を得た。
- 参考スコア(独自算出の注目度): 46.79601705850277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-turn response selection is a challenging task due to its high demands
on efficient extraction of the matching features from abundant information
provided by context utterances. Since incorporating syntactic information like
dependency structures into neural models can promote a better understanding of
the sentences, such a method has been widely used in NLP tasks. Though
syntactic information helps models achieved pleasing results, its application
in retrieval-based dialogue systems has not been fully explored. Meanwhile,
previous works focus on intra-sentence syntax alone, which is far from
satisfactory for the task of multi-turn response where dialogues usually
contain multiple sentences. To this end, we propose SIA, Syntax-Informed
Attention, considering both intra- and inter-sentence syntax information. While
the former restricts attention scope to only between tokens and corresponding
dependents in the syntax tree, the latter allows attention in cross-utterance
pairs for those syntactically important tokens. We evaluate our method on three
widely used benchmarks and experimental results demonstrate the general
superiority of our method on dialogue response selection.
- Abstract(参考訳): 文脈発話によって提供される豊富な情報からマッチング特徴を効率的に抽出する要求が高いため、マルチターン応答選択は難しい課題である。
依存構造などの構文情報をニューラルモデルに組み込むことで、文の理解を深めることができるため、このような手法はNLPタスクで広く用いられている。
構文情報はモデルが満足できる結果を得るのに役立つが、その検索ベースの対話システムへの応用は十分に検討されていない。
一方、従来の研究は文内構文のみに重点を置いており、対話が通常複数の文を含むマルチターン応答のタスクには満足できない。
そこで本研究では,文内構文情報と文間構文情報の両方を考慮したSIA, Syntax-Informed Attentionを提案する。
前者は、アノテーションツリー内のトークンと対応する依存物の間にのみ注意範囲を制限するが、後者は、構文上重要なトークンに対して、クロス発話ペアに注意を向ける。
提案手法を3種類のベンチマークで評価し,提案手法の対話応答選択における汎用性を示す実験結果を得た。
関連論文リスト
- Utterance Rewriting with Contrastive Learning in Multi-turn Dialogue [22.103162555263143]
比較学習とマルチタスク学習を導入し、問題を共同でモデル化する。
提案手法は,複数の公開データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-03-22T10:13:27Z) - Who says like a style of Vitamin: Towards Syntax-Aware
DialogueSummarization using Multi-task Learning [2.251583286448503]
個々の話者からの発声と独特の統語構造との関係に焦点をあてる。
話者は、音声プリントのような言語情報を含むことができる独自のテキストスタイルを持つ。
構文認識情報と対話要約の両方をマルチタスクで学習する。
論文 参考訳(メタデータ) (2021-09-29T05:30:39Z) - DialogueCSE: Dialogue-based Contrastive Learning of Sentence Embeddings [33.89889949577356]
本稿では,対話型コントラスト学習手法であるDialogueCSEを提案する。
我々は,Microsoft Dialogue Corpus,Jing Dong Dialogue Corpus,E-Commerce Dialogue Corpusの3つの多ターン対話データセットについて評価を行った。
論文 参考訳(メタデータ) (2021-09-26T13:25:41Z) - Self-supervised Dialogue Learning for Spoken Conversational Question
Answering [29.545937716796082]
音声対話質問応答(SCQA)では、複数の会話を含む固定された音声文書を検索して分析することにより、対応する質問に対する回答を生成する。
本研究では,不整合判定,挿入検出,質問予測などの自己教師付き学習手法を導入し,コア参照の解決と対話のコヒーレンスを明確に把握する。
提案手法は,従来の事前学習言語モデルと比較して,より一貫性があり,意味があり,適切な応答を提供する。
論文 参考訳(メタデータ) (2021-06-04T00:09:38Z) - Structural Pre-training for Dialogue Comprehension [51.215629336320305]
本稿では,SPIDER, Structure Pre-trained DialoguE Readerについて述べる。
対話のような特徴をシミュレートするために,元のLM目的に加えて,2つの訓練目標を提案する。
広く使われている対話ベンチマークの実験結果から,新たに導入した自己教師型タスクの有効性が検証された。
論文 参考訳(メタデータ) (2021-05-23T15:16:54Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
本稿では,コンテキスト応答マッチングのためのパーソナライズドハイブリッドマッチングネットワーク(phmn)を提案する。
1) ユーザ固有の対話履歴からパーソナライズされた発話行動を付加的なマッチング情報として抽出する。
ユーザ識別による2つの大規模データセット,すなわちパーソナライズされた対話 Corpus Ubuntu (P-Ubuntu) とパーソナライズされたWeiboデータセット (P-Weibo) のモデルを評価する。
論文 参考訳(メタデータ) (2021-03-17T09:42:11Z) - Multi-turn Dialogue Reading Comprehension with Pivot Turns and Knowledge [43.352833140317486]
マルチターン対話読解は、機械に対話コンテキストを読み、応答選択や回答質問といったタスクを解くことを目的としている。
この研究は、ピボット発話として重要なターンを抽出することで、上記の2つの課題に対処する最初の試みである。
本稿では,対話理解のためのトランスフォーマーに基づく言語モデル上に,ピボット指向の深層選択モデル(PoDS)を提案する。
論文 参考訳(メタデータ) (2021-02-10T15:00:12Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z) - Dialogue-Based Relation Extraction [53.2896545819799]
本稿では,人間による対話型関係抽出(RE)データセットDialogREを提案する。
我々は,対話型タスクと従来のREタスクの類似点と相違点の分析に基づいて,提案課題において話者関連情報が重要な役割を担っていると論じる。
実験結果から,ベストパフォーマンスモデルにおける話者認識の拡張が,標準設定と会話評価設定の両方において向上することが示された。
論文 参考訳(メタデータ) (2020-04-17T03:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。